applsci-logo

Journal Browser

Journal Browser

Enhancing the Thermal Properties of Lightweight Composite Materials

A special issue of Applied Sciences (ISSN 2076-3417).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 192

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
Interests: aerogel; porous material; thermal insulation material; coating material
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
Interests: porous ceramics; aerogel; thermal insulation; thermal management

Special Issue Information

Dear Colleagues,

Lightweight composite materials have been widely used in fields such as aerospace, new energy vehicles, and electronic packaging due to their low density and high specific strength characteristics. The enhancement in the thermal performance of lightweight composite materials is currently a research hotspot in the field of materials science, aiming to break through the application bottleneck of traditional materials in high-temperature or rapid-heat-transfer scenarios. Specifically, the optimization of its thermal performance needs to focus on three dimensions: system integration of thermal insulation performance, thermal conductivity, and thermal management capability. Taking spacecraft thermal protection systems as an example, the outer shell material needs to achieve an efficient dissipation of internal electronic component heat and the effective isolation from external extreme high temperatures. In the battery system of new energy vehicles, it is necessary to ensure efficient heat dissipation channels between battery cells and construct controllable thermal resistance barriers between modeling groups. The collaborative optimization of multi-level thermal performance will provide precise and controllable thermal protection solutions for extreme environmental equipment, promoting the development of intelligent and adaptive thermal management systems.

Dr. Baosheng Xu
Guest Editor

Dr. Ning Zhou
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lightweight composite materials
  • thermal insulation
  • thermal conductivity
  • thermal management
  • collaborative optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 11170 KB  
Article
Research on Preparation Process of Ultrafine Spherical WC-10Co-4Cr Spraying Powder Based on Spray Granulation
by Jianhua He, Qihua Ding and Baosheng Xu
Appl. Sci. 2025, 15(18), 10213; https://doi.org/10.3390/app151810213 - 19 Sep 2025
Viewed by 77
Abstract
HVAF WC-10Co-4Cr coating has been applied to the extreme wear protection of lightweight titanium alloy workpieces. However, the new generation of lightweight titanium alloy inner bore wear-resistant workpieces is faced with strong wear and instantaneous high-temperature airflow erosion during service, which requires a [...] Read more.
HVAF WC-10Co-4Cr coating has been applied to the extreme wear protection of lightweight titanium alloy workpieces. However, the new generation of lightweight titanium alloy inner bore wear-resistant workpieces is faced with strong wear and instantaneous high-temperature airflow erosion during service, which requires a WC-10Co-4Cr wear-resistant coating with low surface roughness, high thickness and high toughness. In addition, its small diameter inner hole also requires the rapid heating, melting and acceleration performance of sprayed powder during spraying. At present, the finest spraying powder used in this system is generally in the range of 5–15 μm, which faces difficulties in meeting the above requirements. In order to solve this problem, the preparation of 2–10 μm spherical spray powder was studied though a spray granulation experiment, and the change law of powder morphology with the solid content of pre-spray slurry was explored. The suitable binder was selected through a slurry sedimentation test and viscosity test, so that the gunable solid content of the pre-sprayed slurry was reduced from 60 wt.% to 12.5% by weight, which significantly reduces the particle size of the powder obtained by spray granulation. When the solid content of pre-sprayed slurry is 12.5 wt.%, sodium carboxymethyl cellulose (CMC-Na) is selected as the binder, and the binder content is 2 wt.%, the particle size range of powder obtained by spray granulation process reaches 2–10 μm, and the median particle size reaches 5 μm. After heat treatment, the powder is spherical and dense inside. The research results provide technical support for preparing high-performance ultrafine WC-10Cr-4Co spherical powder with wear-resistant coating for light titanium alloy. Full article
(This article belongs to the Special Issue Enhancing the Thermal Properties of Lightweight Composite Materials)
Show Figures

Figure 1

Back to TopTop