Autonomous Systems in Cyber-Physical Systems and Smart Industry: Innovations and Challenges

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Mechanical Engineering".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 2703

Special Issue Editors

SYSTEC-ARISE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Interests: Industry 4.0; cyber–physical systems; artificial immune systems; autonomic computing; IoT

E-Mail Website
Guest Editor
1. Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral No 12, 6000-084 Castelo Branco, Portugal
2. SYSTEC—Research Center for Systems and Technologies, ARISE—Advanced Production and Intelligent Systems Associated Laboratory, 4200-465 Porto, Portugal
Interests: electronics; instrumentation; automation; control; robotics; cyber-physical systems; computer vision; image processing and machine learning
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Institute Industrial IT (inIT), Technische Hochschule Ostwestfalen-Lippe (TH OWL), Campusallee 6, D-32657 Lemgo, Germany
Interests: Intelligent automation; digitalization; information fusion; industrial image processing; pattern recognition; cyber–physical (production) systems; machine learning; resource-limited electronics; mobile devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Autonomous systems are emerging as game-changers in the realm of Cyber–Physical Systems (CPS) and Smart Industry, revolutionizing how industries operate and interact with the physical world. This Special Issue is dedicated to exploring the integration and impact of autonomous systems within the CPS framework. We invite contributions that delve into the design, development, and deployment of Self-* capabilities in CPS and industrial applications. Topics of interest include autonomous manufacturing, logistics, predictive maintenance, AI (artificial intelligence) and machine learning in industrial processes, and autonomous decision-making processes. We also welcome research on the challenges and opportunities presented by autonomous systems, such as safety, reliability, security, privacy, and ethical considerations. Join us in uncovering the transformative potential of autonomous systems in shaping the future of Smart Industry.

Dr. Rui Pinto
Dr. Pedro M. B. Torres
Prof. Dr. Volker Lohweg
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyber–physical systems
  • Smart Industry
  • autonomous systems
  • Self-*
  • artificial intelligence (AI)
  • machine learning
  • real-time monitoring
  • predictive maintenance
  • security and privacy in industry
  • ethical considerations in autonomous systems

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2191 KiB  
Article
Software and Architecture Orchestration for Process Control in Industry 4.0 Enabled by Cyber-Physical Systems Technologies
by Carlos Serôdio, Pedro Mestre, Jorge Cabral, Monica Gomes and Frederico Branco
Appl. Sci. 2024, 14(5), 2160; https://doi.org/10.3390/app14052160 - 05 Mar 2024
Viewed by 964
Abstract
In the context of Industry 4.0, this paper explores the vital role of advanced technologies, including Cyber–Physical Systems (CPS), Big Data, Internet of Things (IoT), digital twins, and Artificial Intelligence (AI), in enhancing data valorization and management within industries. These technologies are integral [...] Read more.
In the context of Industry 4.0, this paper explores the vital role of advanced technologies, including Cyber–Physical Systems (CPS), Big Data, Internet of Things (IoT), digital twins, and Artificial Intelligence (AI), in enhancing data valorization and management within industries. These technologies are integral to addressing the challenges of producing highly customized products in mass, necessitating the complete digitization and integration of information technology (IT) and operational technology (OT) for flexible and automated manufacturing processes. The paper emphasizes the importance of interoperability through Service-Oriented Architectures (SOA), Manufacturing-as-a-Service (MaaS), and Resource-as-a-Service (RaaS) to achieve seamless integration across systems, which is critical for the Industry 4.0 vision of a fully interconnected, autonomous industry. Furthermore, it discusses the evolution towards Supply Chain 4.0, highlighting the need for Transportation Management Systems (TMS) enhanced by GPS and real-time data for efficient logistics. A guideline for implementing CPS within Industry 4.0 environments is provided, focusing on a case study of real-time data acquisition from logistics vehicles using CPS devices. The study proposes a CPS architecture and a generic platform for asset tracking to address integration challenges efficiently and facilitate the easy incorporation of new components and applications. Preliminary tests indicate the platform’s real-time performance is satisfactory, with negligible delay under test conditions, showcasing its potential for logistics applications and beyond. Full article
Show Figures

Figure 1

16 pages, 830 KiB  
Article
Real-Time Production Scheduling and Industrial Sonar and Their Application in Autonomous Mobile Robots
by Francisco Burillo, María-Pilar Lambán, Jesús-Antonio Royo, Paula Morella and Juan-Carlos Sánchez
Appl. Sci. 2024, 14(5), 1890; https://doi.org/10.3390/app14051890 - 25 Feb 2024
Viewed by 631
Abstract
In real-time production planning, there are exceptional events that can cause problems and deviations in the production schedule. These circumstances can be solved with real-time production planning, which is able to quickly reschedule the operations at each work centre. Mobile autonomous robots are [...] Read more.
In real-time production planning, there are exceptional events that can cause problems and deviations in the production schedule. These circumstances can be solved with real-time production planning, which is able to quickly reschedule the operations at each work centre. Mobile autonomous robots are a key element in this real-time planning and are a fundamental link between production centres. Work centres in Industry 4.0 environments can use current technology, i.e., a biomimetic strategy that emulates echolocation, with the aim of establishing bidirectional communication with other work centres through the application of agile algorithms. Taking advantage of these communication capabilities, the basic idea is to distribute the execution of the algorithm among different work centres that interact like a parasympathetic system that makes automatic movements to reorder the production schedule. The aim is to use algorithms with an optimal solution based on the simplicity of the task distribution, trying to avoid heuristic algorithms or heavy computations. This paper presents the following result: the development of an Industrial Sonar algorithm which allows real-time scheduling and obtains the optimal solution at all times. The objective of this is to reduce the makespan, reduce energy costs and carbon footprint, and reduce the waiting and transport times for autonomous mobile robots using the Internet of Things, cloud computing and machine learning technologies to emulate echolocation. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2010 KiB  
Review
Emerging Technologies for Automation in Environmental Sensing: Review
by Shekhar Suman Borah, Aaditya Khanal and Prabha Sundaravadivel
Appl. Sci. 2024, 14(8), 3531; https://doi.org/10.3390/app14083531 - 22 Apr 2024
Viewed by 442
Abstract
This article explores the impact of automation on environmental sensing, focusing on advanced technologies that revolutionize data collection analysis and monitoring. The International Union of Pure and Applied Chemistry (IUPAC) defines automation as integrating hardware and software components into modern analytical systems. Advancements [...] Read more.
This article explores the impact of automation on environmental sensing, focusing on advanced technologies that revolutionize data collection analysis and monitoring. The International Union of Pure and Applied Chemistry (IUPAC) defines automation as integrating hardware and software components into modern analytical systems. Advancements in electronics, computer science, and robotics drive the evolution of automated sensing systems, overcoming traditional limitations in manual data collection. Environmental sensor networks (ESNs) address challenges in weather constraints and cost considerations, providing high-quality time-series data, although issues in interoperability, calibration, communication, and longevity persist. Unmanned Aerial Systems (UASs), particularly unmanned aerial vehicles (UAVs), play an important role in environmental monitoring due to their versatility and cost-effectiveness. Despite challenges in regulatory compliance and technical limitations, UAVs offer detailed spatial and temporal information. Pollution monitoring faces challenges related to high costs and maintenance requirements, prompting the exploration of cost-efficient alternatives. Smart agriculture encounters hurdle in data integration, interoperability, device durability in adverse weather conditions, and cybersecurity threats, necessitating privacy-preserving techniques and federated learning approaches. Financial barriers, including hardware costs and ongoing maintenance, impede the widespread adoption of smart technology in agriculture. Integrating robotics, notably underwater vehicles, proves indispensable in various environmental monitoring applications, providing accurate data in challenging conditions. This review details the significant role of transfer learning and edge computing, which are integral components of robotics and wireless monitoring frameworks. These advancements aid in overcoming challenges in environmental sensing, underscoring the ongoing necessity for research and innovation to enhance monitoring solutions. Some state-of-the-art frameworks and datasets are analyzed to provide a comprehensive review on the basic steps involved in the automation of environmental sensing applications. Full article
Show Figures

Figure 1

Back to TopTop