Analysis of Virulence Mechanisms of Bacterial Pathogens in Aquaculture

A special issue of Antibiotics (ISSN 2079-6382).

Deadline for manuscript submissions: closed (28 February 2021) | Viewed by 11176

Special Issue Editor


E-Mail Website
Guest Editor
Universidade de Vigo, Vigo, Spain
Interests: Bacterial toxins; virulence mechanisms; quorum sensing; probiotics

Special Issue Information

Dear Colleagues,

Antibiotic is launching a Special Issue titled “Analysis of Virulence Mechanisms of Bacterial Pathogens in Aquaculture”. I encourage authors to submit contributions that cover aspects such as bacterial virulence mechanisms, the ecology of bacterial pathogens, interactions of bacterial environment and natural habitats, prevention of bacterial infections, limitation of the dissemination of pathogens outside its natural habitats, and any other subject related with this matter.

This is a wide area, I propose that authors submit either an investigation article or a revision of some of the principal bacterial pathogens with a high impact in aquaculture. This issue will promote the interests of aquaculture industries, personal of quality control, and masters students.

Prof. Dr. Teresa Pérez Nieto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Bacterial toxins
  • quorum sensing
  • quorum quenching
  • siderophores
  • probiotics
  • bacterial antibiotic sensitivity
  • world aquaculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 17861 KiB  
Article
Attenuation of Aeromonas hydrophila Infection in Carassius auratus by YtnP, a N-acyl Homoserine Lactonase from Bacillus licheniformis T-1
by Mengfan Peng, Wentao Tong, Zhen Zhao, Ling Xiao, Zhaoyue Wang, Xuanming Liu, Xuanhao He and Zengfu Song
Antibiotics 2021, 10(6), 631; https://doi.org/10.3390/antibiotics10060631 - 26 May 2021
Cited by 12 | Viewed by 3116
Abstract
In this experiment, the quorum quenching gene ytnP of Bacillus licheniformis T-1 was cloned and expressed, and the effect against infection of Aeromonas hydrophila ATCC 7966 was evaluated in vitro and vivo. The BLAST results revealed a 99% sequence identity between the ytnP [...] Read more.
In this experiment, the quorum quenching gene ytnP of Bacillus licheniformis T-1 was cloned and expressed, and the effect against infection of Aeromonas hydrophila ATCC 7966 was evaluated in vitro and vivo. The BLAST results revealed a 99% sequence identity between the ytnP gene of T-1 and its homolog in B.subtilis sub sp. BSP1, and the dendroGram showed that the similarity in the YtnP protein in T-1 was 100% in comparison with B.subtilis 3610, which was categorized as the Aidc cluster of the MBL family. The AHL lactonase activity of the purified YtnP was detected as 1.097 ± 0.7 U/mL with C6-HSL as the substrate. Otherwise, purified YtnP protein could significantly inhibit the biofilm formation of A.hydrophila ATCC 7966 with an inhibition rate of 68%. The MIC of thiamphenicol and doxycycline hydrochloride against A. hydrophila reduced from 4 μg/mL and 0.5 μg/mL to 1 μg/mL and 0.125 μg/mL, respectively, in the presence of YtnP. In addition, YtnP significantly inhibited the expression of five virulence factors hem, ahyB, ast, ep, aerA of A. hydrophila ATCC 7966 as well (p < 0.05). The results of inhibition on virulence showed a time-dependence tendency, while the strongest anti-virulence effects were within 4–24 h. In vivo, when the YtnP protein was co-injected intraperitoneally with A. hydrophila ATCC 7966, it attenuated the pathogenicity of A. hydrophila and the accumulated mortality was 27 ± 4.14% at 96 h, which was significantly lower than the average mortality of 78 ± 2.57% of the Carassius auratus injected with 108 CFU/mL of A. hydrophila ATCC 7966 only (p < 0.001). In conclusion, the AHL lactonase in B. licheniformis T-1 was proven to be YtnP protein and could be developed into an agent against infection of A. hydrophila in aquaculture. Full article
Show Figures

Figure 1

13 pages, 1108 KiB  
Article
The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius
by Fabián Galvis, Juan L. Barja, Manuel L. Lemos and Miguel Balado
Antibiotics 2021, 10(4), 391; https://doi.org/10.3390/antibiotics10040391 - 6 Apr 2021
Cited by 8 | Viewed by 2699
Abstract
Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. [...] Read more.
Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. In silico analysis of the genome of V. neptunius strain PP-145.98 led to the identification of two hitherto uncharacterized chromosomal loci encoding a probable vibriolysin-like metalloprotease and a putative collagenase, which were designated VnpA and ColA, respectively. Single defective mutants of each gene were obtained in V. neptunius PP-145.98, and the phospholipase, esterase and collagenase activities were studied and compared with those of the wild-type strain. The results showed that the single inactivation of vnpA resulted in a 3-fold reduction in phospholipase/esterase activity. Inactivation of colA reduced the collagenase activity by 50%. Finally, infection challenges performed in oyster larvae showed that ΔvnpA and ΔcolA—single mutant strains of V. neptunius—are between 2–3-fold less virulent than the wild-type strain. Thus, the present work demonstrates that the production of both VnpA and ColA is required for the full virulence of the bivalve pathogen V. neptunius. Full article
Show Figures

Figure 1

10 pages, 1103 KiB  
Article
Quantity and Quality of Aquaculture Enrichments Influence Disease Epidemics and Provide Ecological Alternatives to Antibiotics
by Anssi Karvonen, Ville Räihä, Ines Klemme, Roghaieh Ashrafi, Pekka Hyvärinen and Lotta-Riina Sundberg
Antibiotics 2021, 10(3), 335; https://doi.org/10.3390/antibiotics10030335 - 22 Mar 2021
Cited by 8 | Viewed by 4543
Abstract
Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of [...] Read more.
Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials. Full article
Show Figures

Graphical abstract

Back to TopTop