The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Growth Conditions
2.2. General DNA Manipulation Techniques and PCR Assays
2.3. The Search for Candidate Genes and Construction of vnpA and colA Mutants by Allelic Exchange
2.4. Enzymatic Activity
2.5. Virulence Assays
3. Results
3.1. V. neptunius Strains Show Proteolytic and Lipolytic Activities
3.2. The V. neptunius Genome Contains Genes Encoding Two Metalloproteases Putatively Related to Virulence
3.3. Inactivation of VnpA and ColA Reduced Proteolytic Activity
3.4. VnpA and ColA Have a Major Role in V. neptunius Virulence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fishery and Aquaculture 2020 (SOFIA); FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- López, B.D.; Methion, S. The impact of shellfish farming on common bottlenose dolphins’ use of habitat. Mar. Biol. 2017, 164, 83. [Google Scholar] [CrossRef]
- Prado, S.; Romalde, J.L.; Montes, J.; Barja, J.L. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 2005, 67, 209–215. [Google Scholar] [CrossRef]
- Pruzzo, C.; Huq, A.; Colwell, R.R.; Donelli, G. Pathogenic Vibrio Species in the Marine and Estuarine Environment. In Oceans and Health: Pathogens in the Marine Environment; Springer: New York, NY, USA, 2006; pp. 217–252. [Google Scholar]
- Austin, B. Vibrios as causal agents of zoonoses. Vet. Microbiol. 2010, 140, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Gorrasi, S.; Pasqualetti, M.; Franzetti, A.; Pittino, F.; Fenice, M. Vibrio communities along a salinity gradient within a marine saltern hypersaline environment (Saline di Tarquinia, Italy). Environ. Microbiol. 2020, 22, 4356–4366. [Google Scholar] [CrossRef] [PubMed]
- Dubert, J.; Barja, J.L.; Romalde, J.L. New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Front. Microbiol. 2017, 8, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travers, M.-A.; Miller, K.B.; Roque, A.; Friedman, C.S. Bacterial diseases in marine bivalves. J. Invertebr. Pathol. 2015, 131, 11–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Amado, M.A.; Bozo-Hurtado, L.; Astor, Y.; Suárez, P.; Chistoserdov, A. Denaturing gradient gel electrophoresis analyses of the vertical distribution and diversity of Vibrio spp. populations in the Cariaco Basin. FEMS Microbiol. Ecol. 2011, 77, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, F.L.; Li, Y.; Gomez-Gil, B.; Thompson, C.C.; Hoste, B.; Vandemeulebroecke, K.; Rupp, G.S.; Pereira, A.; De Bem, M.M.; Sorgeloos, P.; et al. Vibrio neptunius sp. nov., Vibrio brasiliensis sp. nov. and Vibrio xuii sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps). Int. J. Syst. Evol. Microbiol. 2003, 53, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Dubert, J.; Nelson, D.R.; Spinard, E.J.; Kessner, L.; Gomez-Chiarri, M.; Da Costa, F.; Prado, S.; Barja, J.L. Following the infection process of vibriosis in Manila clam (Ruditapes philippinarum) larvae through GFP-tagged pathogenic Vibrio species. J. Invertebr. Pathol. 2016, 133, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A.; Pirofski, L.-A. Virulence factors and their mechanisms of action: The view from a damage–response framework. J. Water Health 2009, 7, S2–S18. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, B.; Liu, D.; Wu, R.; Zhang, J.; Liao, B.; He, H.; Bian, F. Classification and structural insight into vibriolysin-like proteases of Vibrio pathogenicity. Microb. Pathog. 2018, 117, 335–340. [Google Scholar] [CrossRef]
- Saulnier, D.; De Decker, S.; Haffner, P.; Cobret, L.; Robert, M.; Garcia, C. A Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation between Virulence and Metalloprotease-like Activity. Microb. Ecol. 2010, 59, 787–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, S.-I.; Shinoda, S. Microbial metalloproteases and pathogenesis. Microbes Infect. 2000, 2, 91–98. [Google Scholar] [CrossRef]
- Shinoda, S.; Miyoshi, S.-I. Proteases Produced by Vibrios. Biocontrol Sci. 2011, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishina, Y.; Miyoshi, S.; Nagase, A.; Shinoda, S. Significant role of an exocellular protease in utilization of heme by Vibrio vulnificus. Infect. Immun. 1992, 60, 2128–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamune, K.; Yamamoto, K.; Naka, A.; Matsuyama, J.; Miwatani, T.; Honda, T. In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrio cholerae by soluble hemagglutinin/protease of V. cholerae, trypsin, and other proteases. Infect. Immun. 1996, 64, 4655–4658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.J.; Leitch, G.J.; Camilli, A.; Benitez, J.A. Contribution of Hemagglutinin/Protease and Motility to the Pathogenesis of El Tor Biotype Cholera. Infect. Immun. 2006, 74, 2072–2079. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Miyoshi, S.-I.; Shinoda, S. Production of Antigenically Related Exocellular Elastolytic Proteases Mediating Hemagglutination by Vibrios. Microbiol. Immunol. 1995, 39, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, R.A.; Boesman-Finkelstein, M.; Chang, Y.; Häse, C.C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 1992, 60, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santos, E.O.; Alves, N.T.; Dias, G.M.; Mazotto, A.M.; Vermelho, A.B.; Vora, G.J.; Wilson, B.; Beltran, V.H.; Bourne, D.G.; Le Roux, F.; et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 2011, 5, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yuan, T.; Piva, C.; Spinard, E.J.; Schuttert, C.W.; Rowley, D.C.; Nelson, D.R. The Probiotic BacteriumPhaeobacter inhibensDownregulates Virulence Factor Transcription in the Shellfish Pathogen Vibrio coralliilyticus by N-Acyl Homoserine Lactone Production. Appl. Environ. Microbiol. 2018, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushijima, B.; Meyer, J.L.; Thompson, S.; Pitts, K.; Marusich, M.F.; Tittl, J.; Weatherup, E.; Reu, J.; Wetzell, R.; Aeby, G.S.; et al. Disease Diagnostics and Potential Coinfections by Vibrio coralliilyticus During an Ongoing Coral Disease Outbreak in Florida. Front. Microbiol. 2020, 11, 569354. [Google Scholar] [CrossRef] [PubMed]
- Delston, R.B.; Kothary, M.H.; Shangraw, K.A.; Tall, B.D. Isolation and characterization of a zinc-containing metalloprotease expressed by Vibrio tubiashii. Can. J. Microbiol. 2003, 49, 525–529. [Google Scholar] [CrossRef]
- Labreuche, Y.; Le Roux, F.; Henry, J.; Zatylny, C.; Huvet, A.; Lambert, C.; Soudant, P.; Mazel, D.; Nicolas, J.-L. Vibrio aestuarianus zinc metalloprotease causes lethality in the Pacific oyster Ostrea edulis and impairs the host cellular immune defenses. Fish Shellfish. Immunol. 2010, 29, 753–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roux, F.; Binesse, J.; Saulnier, D.; Mazel, D. Construction of a Vibrio splendidus Mutant Lacking the Metalloprotease Gene vsm by Use of a Novel Counterselectable Suicide Vector. Appl. Environ. Microbiol. 2006, 73, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Emiyoshi, S.-I. Extracellular proteolytic enzymes produced by human pathogenic vibrio species. Front. Microbiol. 2013, 4, 339. [Google Scholar] [CrossRef] [Green Version]
- Mima, T.; Gotoh, K.; Yamamoto, Y.; Maeda, K.; Shirakawa, T.; Matsui, S.; Murata, Y.; Koide, T.; Tokumitsu, H.; Matsushita, O. Expression of Collagenase is Regulated by the VarS/VarA Two-Component Regulatory System in Vibrio alginolyticus. J. Membr. Biol. 2017, 251, 51–63. [Google Scholar] [CrossRef]
- Dahanayake, P.S.; Hossain, S.; Wickramanayake, M.; Wimalasena, S.; Heo, G. Manila clam (Ruditapes philippinarum) marketed in Korea as a source of vibrios harbouring virulence and β-lactam resistance genes. Lett. Appl. Microbiol. 2019, 71, 46–53. [Google Scholar] [CrossRef]
- Lemos, M.L.; Salinas, P.; Toranzo, A.E.; Barja, J.L.; Crosa, J.H. Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum. J. Bacteriol. 1988, 170, 1920–1925. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; De Lorenzo, V.; Timmis, K.N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 1990, 172, 6557–6567. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.F.; Kushner, S.R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 1991, 100, 195–199. [Google Scholar] [CrossRef]
- Mouriño, S.; Osorio, C.R.; Lemos, M.L. Characterization of Heme Uptake Cluster Genes in the Fish Pathogen Vibrio anguillarum. J. Bacteriol. 2004, 186, 6159–6167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Romalde, S.; Magariños, B.; Nunez, S.; Toranzo, A.E.; Romalde, J.L. Phenotypic and Genetic Characterization of Pseudomonas anguilliseptica Strains Isolated from Fish. J. Aquat. Anim. Health 2003, 15, 39–47. [Google Scholar] [CrossRef]
- Lee, L.P.; Karbul, H.M.; Citartan, M.; Gopinath, S.C.B.; Lakshmipriya, T.; Tang, T.-H. Lipase-SecretingBacillusSpecies in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution. BioMed Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Mersni-Achour, R.; Ben Cheikh, Y.; Pichereau, V.; Doghri, I.; Etien, C.; Dégremont, L.; Saulnier, D.; Fruitier-Arnaudin, I.; Travers, M.-A. Factors other than metalloprotease are required for full virulence of French Vibrio tubiashii isolates in oyster larvae. Microbiology 2015, 161, 997–1007. [Google Scholar] [CrossRef]
- Miyoshi, S.; Wakae, H.; Tomochika, K.; Shinoda, S. Functional domains of a zinc metalloprotease from Vibrio vulnificus. J. Bacteriol. 1997, 179, 7606–7609. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.S.; Correia, A.; Esteves, A.C. Bacterial collagenases—A review. Crit. Rev. Microbiol. 2016, 42, 106–126. [Google Scholar] [CrossRef]
- Abfalter, C.M.; Schönauer, E.; Ponnuraj, K.; Huemer, M.; Gadermaier, G.; Regl, C.; Briza, P.; Ferreira, F.; Huber, C.G.; Brandstetter, H.; et al. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579. PLoS ONE 2016, 11, e0162433. [Google Scholar] [CrossRef] [Green Version]
- Vences, A.; Rivas, A.J.; Lemos, M.L.; Husmann, M.; Osorio, C.R. Chromosome-Encoded Hemolysin, Phospholipase, and Collagenase in Plasmidless Isolates of Photobacterium damselae subsp. damselae Contribute to Virulence for Fish. Appl. Environ. Microbiol. 2017, 83, e00401-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, A.J.; Balado, M.; Lemos, M.L.; Osorio, C.R. The Photobacterium damselae subsp. damselae Hemolysins Damselysin and HlyA Are Encoded within a New Virulence Plasmid. Infect. Immun. 2011, 79, 4617–4627. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.N. Fitness Factors in Vibrios: A Mini-review. Microb. Ecol. 2013, 65, 826–851. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Genet. 2007, 5, 355–362. [Google Scholar] [CrossRef]
- Engel, S.; Jensen, P.R.; Fenical, W. Chemical Ecology of Marine Microbial Defense. J. Chem. Ecol. 2002, 28, 1971–1985. [Google Scholar] [CrossRef]
- Desriac, F.; Le Chevalier, P.; Brillet, B.; Leguerinel, I.; Thuillier, B.; Paillard, C.; Fleury, Y. Exploring the hologenome concept in marine bivalvia: Haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol. Lett. 2013, 350, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defer, D.; Desriac, F.; Henry, J.; Bourgougnon, N.; Baudy-Floc’H, M.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial peptides in oyster hemolymph: The bacterial connection. Fish Shellfish. Immunol. 2013, 34, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vezzulli, L.; Stagnaro, L.; Grande, C.; Tassistro, G.; Canesi, L.; Pruzzo, C. Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). Microb. Ecol. 2017, 75, 495–504. [Google Scholar] [CrossRef]
- Garnier, M.; Labreuche, Y.; Garcia, C.; Robert, M.; Nicolas, J.-L. Evidence for the Involvement of Pathogenic Bacteria in Summer Mortalities of the Pacific Oyster Crassostrea gigas. Microb. Ecol. 2007, 53, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Cerf-Bensussan, N.; Gaboriau-Routhiau, V. The immune system and the gut microbiota: Friends or foes? Nat. Rev. Immunol. 2010, 10, 735–744. [Google Scholar] [CrossRef]
- Leite, L.; Jude-Lemeilleur, F.; Raymond, N.; Henriques, I.; Garabetian, F.; Alves, A. Phylogenetic diversity and functional characterization of the Manila clam microbiota: A culture-based approach. Environ. Sci. Pollut. Res. 2017, 24, 21721–21732. [Google Scholar] [CrossRef]
- Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.; Gibson, L. Challenge of New Zealand Greenshell™ mussel Perna canaliculus larvae using two Vibrio pathogens: A hatchery study. Dis. Aquat. Org. 2009, 86, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. Two pathogens of GreenshellTM mussel larvae, Perna Canaliculus: Vibrio splendidus and a V. coralliilyticus/neptunius-like isolate. J. Fish Dis. 2009, 32, 499–507. [Google Scholar] [CrossRef]
- Galvis, F.; Ageitos, L.; Martínez-Matamoros, D.; Barja, J.L.; Rodríguez, J.; Lemos, M.L.; Jiménez, C.; Balado, M. The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota. Environ. Microbiol. 2020, 22, 5467–5482. [Google Scholar] [CrossRef] [PubMed]
- Pollock, F.J.; Wilson, B.; Johnson, W.R.; Morris, P.J.; Willis, B.L.; Bourne, D.G. Phylogeny of the coral pathogen Vibrio coralliilyticus. Environ. Microbiol. Rep. 2010, 2, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Salamone, M.; Nicosia, A.; Ghersi, G.; Tagliavia, M. Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019, 7, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, E.T.; Harrison, F.; Kümmerli, R.; Ross-Gillespie, A. Do Bacterial “Virulence Factors” Always Increase Virulence? A Meta-Analysis of Pyoverdine Production in Pseudomonas aeruginosa As a Test Case. Front. Microbiol. 2016, 7, 1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassegne, K.; Hu, W.; Ojcius, D.M.; Sun, D.; Ge, Y.; Zhao, J.; Yang, X.F.; Li, L.; Yan, J. Identification of Collagenase as a Critical Virulence Factor for Invasiveness and Transmission of Pathogenic Leptospira Species. J. Infect. Dis. 2014, 209, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Binesse, J.; Delsert, C.; Saulnier, D.; Champomier-Vergès, M.-C.; Zagorec, M.; Munier-Lehmann, H.; Mazel, D.; Le Roux, F. Metalloprotease Vsm Is the Major Determinant of Toxicity for Extracellular Products of Vibrio splendidus. Appl. Environ. Microbiol. 2008, 74, 7108–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, H.; Lind, E.J.; Boin, M.A.; Häse, C.C. The Extracellular Metalloprotease of Vibrio tubiashii Is a Major Virulence Factor for Pacific Oyster (Crassostrea gigas) Larvae. Appl. Environ. Microbiol. 2008, 74, 4101–4110. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, T.; Eisenreich, W. Host-adapted metabolism and its regulation in bacterial pathogens. Front. Cell. Infect. Microbiol. 2015, 5, 28. [Google Scholar] [CrossRef]
- Rivas, A.J.; Balado, M.; Lemos, M.L.; Osorio, C.R. Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae. Infect. Immun. 2013, 81, 3287–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Ahn, S.-H.; Lee, E.-M.; Jeong, S.-H.; Kim, Y.-O.; Lee, S.-J.; Kong, I.-S. The FAXWXXT motif in the carboxyl terminus ofVibrio mimicusmetalloprotease is involved in binding to collagen. FEBS Lett. 2005, 579, 2507–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, M.M.; Ellemor, D.M.; E Bryant, A.; Matsushita, O.; Boyd, R.L.; Stevens, D.L.; Emmins, J.J.; Rood, J.I. Construction and virulence testing of a collagenase mutant of Clostridium perfringens. Microb. Pathog. 2000, 28, 107–117. [Google Scholar] [CrossRef]
- Uitto, V.-J.; Baillie, D.; Wu, Q.; Gendron, R.; Grenier, D.; Putnins, E.E.; Kanervo, A.; Firth, J.D. Fusobacterium nucleatum Increases Collagenase 3 Production and Migration of Epithelial Cells. Infect. Immun. 2005, 73, 1171–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, S.-I.; Nitanda, Y.; Fujii, K.; Kawahara, K.; Li, T.; Maehara, Y.; Ramamurthy, T.; Takeda, Y.; Shinoda, S. Differential gene expression and extracellular secretion of the collagenolytic enzymes by the pathogen Vibrio parahaemolyticus. FEMS Microbiol. Lett. 2008, 283, 176–181. [Google Scholar] [CrossRef] [Green Version]
Strain or Plasmid | Relevant Characteristic (s) | Reference or Source |
---|---|---|
Vibrio neptunius | ||
PP-145.98 | Wild-type strain, isolated from Ruditapes philippinarum (larvae), Apr | [3] |
FG56 | PP-145.98 vnpA defective mutant, Apr | This study |
FGE5 | PP-145.98 colA defective mutant, Apr | This study |
E. coli | ||
DH5α | SupE4 ∆lacU169 (Φ80 lacZ∆M15) hsd R17 recA1 endA1 gyrA96 thi-1 relA1 | Laboratory stock |
S17-1-λpir | Tpr Smr recA, thi, pro, hsdR-M+RP4: 2- Tc:Mu:Km Tn7 λpir | [32] |
Plasmids | ||
pWKS30 | Low-copy-number cloning vector, Apr | [33] |
pNidKan | Suicide vector derived from pCVD442, pir, Kmr | [34] |
Oligonucleotide | Sequence (5′→3′) | Size (bp) |
---|---|---|
vnpA-defective mutant construction | ||
1_1105 EcoRI_1 * | CGGGAATTCGCCATTTATCGCTGAAGCAG | 1008 |
1_1105 BamHI_2 | GGCGGATCCTACTTTAACCATCTCTGCGG | |
1_1105 BamHI_3 | CGCGGATCCGCAGGCAGCAAACCCACAAC | 1006 |
1_1105 XbaI_4 * | CGCTCTAGACGCGATTGGATTGGTCACCG | |
colA-defective mutant construction | ||
1_2110 XbaI_1 * | CGCTCTAGAGGCAAGAGTGCCAATGGCGT | 991 |
1_2110 BamHI_2 | GGCGGATCCATCCGCGACTTTGACTTGTT | |
1_2110 BamHI_3 | GGCGGATCCGATGTGTTTGTCGGTCAACA | 999 |
1_2110 EcoRI_4 * | CGGGAATTCGCGTTTCATTTCTGCCTGCA |
Activity b | |||||||
---|---|---|---|---|---|---|---|
V. neptunius Strain | Origin a | Gelatinase | Esterase | Phospholipase | Hemolysis c | colAd | vnpAd |
PP-145.98 | Oe | +++ | +++ | ++ | + | + | + |
PP-255 | Rp | +++ | ++ | ++ | +++ | + | − |
PP-256 | Rp | +++ | − | + | (+) | + | + |
PP-258 | Rp | + | ++ | ++ | (+) | + | + |
PP-259 | Rp | ++ | ++ | ++ | + | + | + |
PP-266 | Rp | ++ | +++ | ++ | − | + | + |
PP-267 | Rp | ++ | ++ | ++ | ++ | + | − |
PP-269 | Rp | ++ | ++ | ++ | ++ | + | + |
PP-273 | Rp | ++ | ++ | ++ | − | + | + |
PP-302 | Oe | ++ | ++ | ++ | ++ | + | − |
PP-307 | Oe | ++ | +++ | ++ | ++ | + | + |
PP-309 | Oe | ++ | ++ | ++ | ++ | + | − |
PP-312 | Oe | ++ | ++ | ++ | ++ | − | + |
PP-313 | Oe | ++ | ++ | ++ | ++ | + | + |
PP-315 | Oe | ++ | ++ | ++ | + | + | + |
PP-322 | Oe | ++ | ++ | ++ | + | + | + |
PP-323 | Oe | ++ | ++ | ++ | + | + | + |
PP-325 | Oe | ++ | ++ | ++ | ++ | + | + |
PP-326 | Oe | ++ | ++ | ++ | + | + | + |
Species (Accession Number) | % Identity | % Similarity | Function |
---|---|---|---|
VnpA (607 residues) | |||
Vibrio coralliilyticus (WP_043010653.1) | 93 | 97 | metallopeptidase VcpA |
Vibrio tubiashii (WP_171320543.1) | 74 | 86 | metallopeptidase VtpA |
Vibrio cholerae (WP_142622324.1) | 69 | 82 | hemagglutinin/proteinase HapA |
ColA (805 residues) | |||
Vibrio coralliilyticus (WP_043010842.1) | 88 | 93 | putative collagenase |
Vibrio tubiashii (AIW15753.1) | 57 | 73 | peptidase M9 |
Photobacterim damselae subsp damselae (WP_069531114.1) | 39 | 60 | collagenase ColP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvis, F.; Barja, J.L.; Lemos, M.L.; Balado, M. The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius. Antibiotics 2021, 10, 391. https://doi.org/10.3390/antibiotics10040391
Galvis F, Barja JL, Lemos ML, Balado M. The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius. Antibiotics. 2021; 10(4):391. https://doi.org/10.3390/antibiotics10040391
Chicago/Turabian StyleGalvis, Fabián, Juan L. Barja, Manuel L. Lemos, and Miguel Balado. 2021. "The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius" Antibiotics 10, no. 4: 391. https://doi.org/10.3390/antibiotics10040391
APA StyleGalvis, F., Barja, J. L., Lemos, M. L., & Balado, M. (2021). The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius. Antibiotics, 10(4), 391. https://doi.org/10.3390/antibiotics10040391