Advances in the Discovery of Novel Antimicrobial Agents in Nature and Their Applications, 2nd edition

Special Issue Editors

Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
Interests: ecology of microorganisms; food safety; antimicrobials; natural compounds; biodegradation and biodeterioration
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Technology Novi Sad, Department of Biotechnology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
Interests: antimicrobial substance; alternative crops; food microbiology; antimicrobial activity; biowaste; bioactive compounds; natural pigments; antioxidant acitivity; food; antioxidants; encapsulation; plant extract; bioactivity; HPLC; antimicrobials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The first edition of the Special Issue “Advances in the Discovery of Novel Antimicrobial Agents in Nature and Their Applications” was published in 2023.

https://www.mdpi.com/journal/antibiotics/special_issues/NO1R6W3900

It is a successful collection with nine excellent papers and has encouraged us to open a second edition covering the same topic. As a continuation of the first Special Issue, this second edition seeks articles regarding the discovery of novel natural antimicrobial agents and the investigation of their mechanisms of action (targeting new proteins, inhibitors of virulence factors, nanoparticles, antisense oligonucleotides, etc.). This Special Issue also welcomes the submission of manuscripts dealing with common applications of natural antimicrobial agents, such as in the food and pharmaceutical industries and in smart packaging. We also welcome investigations on new and alternative applications, for instance the use of essential oils in the protection of cultural heritage.

Dr. Ana Tomić
Dr. Olja Šovljanski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial agents
  • antimicrobial mechanisms
  • natural products

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 892 KiB  
Article
Nanoencapsulation of Ocimum basilicum L. and Satureja montana L. Essential Oil Mixtures: Enhanced Antimicrobial and Antioxidant Activity
by Natalija Đorđević, Kristina Cvetković, Jelena Stanojević, Ivana Karabegović, Dragiša Savić, Dragoljub Cvetković and Bojana Danilović
Antibiotics 2025, 14(2), 180; https://doi.org/10.3390/antibiotics14020180 - 11 Feb 2025
Viewed by 714
Abstract
Background/Objectives: Essential oils (EOs) represent a natural alternative to chemical additives due to their biological activity. This study evaluated the antimicrobial and antioxidant activities of basil and winter savory EO mixtures, their interactions, and the biological potential of chitosan-based nano-encapsulated EO mixtures. Methods: [...] Read more.
Background/Objectives: Essential oils (EOs) represent a natural alternative to chemical additives due to their biological activity. This study evaluated the antimicrobial and antioxidant activities of basil and winter savory EO mixtures, their interactions, and the biological potential of chitosan-based nano-encapsulated EO mixtures. Methods: Mixtures of basil and winter savory EOs (ratios 1:1, 2:1, 4:1, 8:1, and 16:1) were analyzed for chemical composition via GC–MS. Antimicrobial activity was assessed using minimal inhibition (MIC) and bactericidal (MBC) concentration assays, and interactions were quantified with fractional inhibitory concentration indices (FICIs). Antioxidant activity was evaluated using the DPPH assay, with combination indices used to interpret interaction effects. Chitosan-based nanoparticles were made with the selected oil mixture (2:1), after which characterization and biological activity were performed. Results: The EO mixture with 2:1 ratio exhibited the strongest joint activity, with synergistic or additive effect against four out of six analyzed microorganisms. Antioxidant activity improved with higher basil proportions, with the 16:1 ratio achieving the lowest EC50 value of 0.052 mg/mL after 120 min and demonstrating synergistic effects at all tested ratios. Higher basil EO content also masked the strong odor of winter savory EO. The biological activity of chitosan-based nanoparticles was increased by encapsulation of the EO mixture (2:1), with an encapsulation efficiency of 75.39%. Conclusions: The EO mixture (2:1) showed best antimicrobial efficacy, with synergistic or additive effects. The nano-encapsulated mixture showed good biological potential with effective and complete odor neutralization. These results indicate the potential of basil and winter savory essential oil mixtures for sustainable food preservation applications. Full article
Show Figures

Figure 1

16 pages, 906 KiB  
Article
An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip
by Olja Šovljanski, Milica Aćimović, Teodora Cvanić, Vanja Travičić, Aleksandra Popović, Jelena Vulić, Gordana Ćetković, Aleksandra Ranitović and Ana Tomić
Antibiotics 2024, 13(12), 1178; https://doi.org/10.3390/antibiotics13121178 - 4 Dec 2024
Cited by 1 | Viewed by 931
Abstract
Introduction: This study explores the bioactive properties of extracts obtained from Robin’s pincushion (Diplolepis rosae) collected in Sokobanja, Serbia. Results: Comprehensive in vitro assessments reveal high concentrations of total phenolics (186.37 mg GAE/g), along with significant levels of carotenoids (44.10 μg [...] Read more.
Introduction: This study explores the bioactive properties of extracts obtained from Robin’s pincushion (Diplolepis rosae) collected in Sokobanja, Serbia. Results: Comprehensive in vitro assessments reveal high concentrations of total phenolics (186.37 mg GAE/g), along with significant levels of carotenoids (44.10 μg β-car/g). Robin’s pincushion exhibited superior antioxidant capacities across DPPH, ABTS, and reducing power assays, significantly outperforming comparable extracts from rosehip (Rosa canina) and black rosehip (Rosa spinosissima) in these activities. Additionally, high inhibitory effects were observed in antimicrobial assays, with the extract demonstrating minimal inhibitory concentrations (MIC) as low as 1.56 mg/mL against the Staphylococcus species. Notably, the extract achieved full bactericidal effect within 24 h in time-kill kinetic studies which additionally highlight its potent antistaphylococcal potential. Materials and methods: Analyzing their phytochemical profiles and evaluating their potential as antioxidant, anti-inflammatory, antihyperglycemic, and antimicrobial agents, wide-ranging evaluation of bioactivity of Robin’s pincushion was conducted. Conclusions: These findings highlight Robin’s pincushion as a promising natural source of bioactive compounds with potential applications in traditional and modern medicine for managing oxidative stress, inflammation, hyperglycemia, and microbial infections. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 2212 KiB  
Review
Nature’s Arsenal: Uncovering Antibacterial Agents Against Antimicrobial Resistance
by Ina Gajic, Dusan Kekic, Marko Jankovic, Nina Tomic, Mila Skoric, Milos Petrovic, Dragana Mitic Culafic, Natasa Opavski, Petar Ristivojevic, Maja Krstic Ristivojevic and Bojana Lukovic
Antibiotics 2025, 14(3), 253; https://doi.org/10.3390/antibiotics14030253 - 1 Mar 2025
Cited by 1 | Viewed by 1632
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant public health threat, leading to increased mortality. The World Health Organization has established a priority list highlighting critical multidrug-resistant (MDR) pathogens that demand urgent research on antimicrobial treatments. Considering this and the fact that new antibiotics [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) poses a significant public health threat, leading to increased mortality. The World Health Organization has established a priority list highlighting critical multidrug-resistant (MDR) pathogens that demand urgent research on antimicrobial treatments. Considering this and the fact that new antibiotics are only sporadically approved, natural antibacterial agents have seen a resurgence in interest as potential alternatives to conventional antibiotics and chemotherapeutics. Natural antibacterials, derived from microorganisms, higher fungi, plants, animals, natural minerals, and food sources, offer diverse mechanisms of action against MDR pathogens. Here, we present a comprehensive summary of antibacterial agents from natural sources, including a brief history of their application and highlighting key strategies for using microorganisms (microbiopredators, such as bacteriophages), plant extracts and essential oils, minerals (e.g., silver and copper), as well as compounds of animal origin, such as milk or even venoms. The review also addresses the role of prebiotics, probiotics, and antimicrobial peptides, as well as novel formulations such as nanoparticles. The mechanisms of action of these compounds, such as terpenoids, alkaloids, and phenolic compounds, are explored alongside the challenges for their application, e.g., extraction, formulation, and pharmacokinetics. Conclusions: Future research should focus on developing eco-friendly, sustainable antimicrobial agents and validating their safety and efficacy through clinical trials. Clear regulatory frameworks are essential for integrating these agents into clinical practice. Despite challenges, natural sources offer transformative potential for combating AMR and promoting sustainable health solutions. Full article
Show Figures

Figure 1

Back to TopTop