Application of Metabolomics in Animal Nutrition Research

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1479

Special Issue Editors


E-Mail
Guest Editor
Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
Interests: animal nutrition; metabolism; fetal programming; productivity; animal science; metabolomic
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH 44691, USA
Interests: ruminant; nutrition; fetal programming; energy; metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Currently emerging methods to analyze biomolecules allow for a deep understanding of how metabolic factors influence some events. These methods have been applied to bioinformatic and statistical techniques to provide a more profound understanding of biological pathways and intricate molecular interactions, resulting in the application of metabolomics. Metabolomics is a tool that is being increasingly used in different areas within animal sciences, including nutrition and final products.

Therefore, in this Special Issue, we invite research and review articles on topics including but not limited to the following: the effects of the diet, ingredients, nutrients, local resources, secondary plant metabolites, in vitro assays, and metabolomic protocols on performance, health, meat, milk, and egg quality or production. Target and non-target experiments are welcome, as are submissions with suitable techniques as methods. The contribution should be clearly stated in the manuscript.

Dr. Héctor Aarón Lee-Rangel
Dr. Alejandro E. Relling
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolomic
  • meat
  • milk
  • performance
  • health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5136 KiB  
Article
Serum Metabolomic Profiling in Healthy Dogs Supplemented with Increasing Levels of Purified Beta-1,3/1,6-Glucans
by Pedro Henrique Marchi, Leonardo de Andrade Príncipe, Felipe Sesti Trindade, Luana Dias dos Santos, Gabriela Luiza Fagundes Finardi, Eduarda Lorena Fernandes, Thaila Cristina Putarov, Gabriel Henrique Ribeiro, Luiz Alberto Colnago, Júlio Cesar de Carvalho Balieiro and Thiago Henrique Annibale Vendramini
Animals 2025, 15(9), 1211; https://doi.org/10.3390/ani15091211 - 24 Apr 2025
Viewed by 287
Abstract
Metabolomics has proven to be an effective tool for elucidating mechanisms and assessing the effectiveness of dietary interventions in canine and feline nutrition. In this context, the present study aimed to perform a metabolomic analysis of the serum of dogs supplemented with increasing [...] Read more.
Metabolomics has proven to be an effective tool for elucidating mechanisms and assessing the effectiveness of dietary interventions in canine and feline nutrition. In this context, the present study aimed to perform a metabolomic analysis of the serum of dogs supplemented with increasing levels of beta-1,3/1,6-glucans to generate evidence and gain a deeper understanding of the metabolic responses associated with this supplementation. Eight dogs were evenly assigned to two balanced 4 × 4 Latin squares. Four diets were tested, differing only in beta-glucan content (0.0%, 0.07%, 0.14%, and 0.28%), and the dogs were fed according to their individual maintenance energy requirements. Each experimental period lasted 35 days. On day 35, 5 mL of blood was collected via jugular venipuncture to obtain serum for metabolomic analysis. Nuclear magnetic resonance analysis identified 12 key serum metabolites. Hierarchical heat map analysis revealed differences in metabolite intensity between treatments (p < 0.05). Additionally, the most relevant metabolic pathways were phenylalanine, tyrosine, and tryptophan metabolism; alanine, aspartate, and glutamate metabolism; and glyoxylate and dicarboxylate metabolism. This study demonstrated that increasing levels of purified beta-1,3/1,6-glucans from Saccharomyces cerevisiae modulated key metabolic pathways in dogs, particularly those related to amino acid, lipid and energy metabolisms, and gut microbiota. These findings provide insights into the mechanisms by which beta-glucans influence canine health. Full article
(This article belongs to the Special Issue Application of Metabolomics in Animal Nutrition Research)
Show Figures

Figure 1

27 pages, 16481 KiB  
Article
Rumen-Degradable Starch Improves Rumen Fermentation, Function, and Growth Performance by Altering Bacteria and Its Metabolome in Sheep Fed Alfalfa Hay or Silage
by Wenliang Guo, Meila Na, Shuwei Liu, Kenan Li, Haidong Du, Jing Zhang and Renhua Na
Animals 2025, 15(1), 34; https://doi.org/10.3390/ani15010034 - 26 Dec 2024
Cited by 2 | Viewed by 812
Abstract
Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this [...] Read more.
Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment. The four treatments were a combination of two forage types (alfalfa hay; AH vs. alfalfa silage; AS) and two rumen-degradable starch levels (low RDS; LR vs. high RDS; HR) with a 15 d adaptation and 60 d experimental period. The rumen content and rumen epithelium samples were collected after slaughter. Feeding AS increased the rumen isobutyrate, valerate, ammonia-N (NH3-N) concentration, urase activity, and papillae height (p < 0.05) and reduced the feed to gain (F:G), rumen bacterial protein (BCP), rumen lactic acid concentration, and papillae width (p < 0.05) of sheep. Increased RDS in the diet improved the daily matter intake, average daily gain, and rumen weight, reduced the F:G, and enhanced the rumen nitrogen capture rate by decreasing total amino acids and the NH3-N concentration to increase BCP, aquaporins 3 gene, and protein expression. The rumen microbiota also changed as the HR diet reduced the Chao index (p < 0.05). The metabolomics analysis showed that feeding AS upregulated the rumen tryptophan metabolism and steroid hormone biosynthesis, while the purine metabolism, linoleic acid metabolism, and amino acid biosynthesis were downregulated. Furthermore, increased RDS in the diet upregulated rumen lysine degradation and sphingolipid metabolism, while aromatic amino acid biosynthesis was downregulated. Additionally, the correlation analysis results showed that ADG was positively correlated with 5-aminopentanoic acid, and three microorganisms (unclassified_f__Selenomonadaceae, Quinella, Christensenellaceae_R-7_group) were positively correlated with the rumen isobutyrate, valerate, NH3-N concentration, urase activity, tryptophan metabolism, and steroid hormone biosynthesis and negatively correlated with linoleic acid metabolism and amino acid biosynthesis in sheep. In summary, increased RDS in the diet improved the growth performance and rumen N utilization and reduced bacterial diversity in sheep. The alfalfa silage diet only increased feed efficiency; it did not affect growth performance. Additionally, it decreased rumen nitrogen utilization, linoleic acid, and amino acid biosynthesis. Nevertheless, there were limited interactions between forage and RDS; increased RDS in the AS diet enhanced the nitrogen capture rate of rumen microorganisms for alfalfa silage, with only slight improvements in the purine metabolism, linoleic acid, and amino acid synthesis. Full article
(This article belongs to the Special Issue Application of Metabolomics in Animal Nutrition Research)
Show Figures

Figure 1

Back to TopTop