Heat Stress in Animal Oocytes: Impacts, Evaluation, and Alleviation

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Reproduction".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 586

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, Brazil
Interests: oocyte; prantral follicles; heat stress
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Heat stress is the physiological response to the disruption of thermal balance caused by high-temperature environments, which affects normal follicular and oocyte development in mammals and leads to reductions in embryo production. Therefore, it is of great importance to have a deep understanding of the mechanisms underlying the effects of heat stress on oocytes and to explore strategies for mitigating or preventing its detrimental impacts on livestock animals. Knowing the effects of heat stress on the generation of reactive oxygen species, endocrine disruption, mitochondrial function, and gene expression in oocytes and follicles can result in the improvement of assisted reproductive techniques in various species.

Prof. Dr. José Roberto Viana Silva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oocyte
  • follicles
  • heat stress
  • ovary

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

17 pages, 1696 KiB  
Review
Reproductive Challenges in Ruminants Under Heat Stress: A Review of Follicular, Oocyte, and Embryonic Responses
by Danisvânia Ripardo Nascimento, Venância Antonia Nunes Azevedo, Regislane Pinto Ribeiro, Gabrielle de Oliveira Ximenes, Andreza de Aguiar Silva, Efigênia Cordeiro Barbalho, Laryssa Gondim Barrozo, Sueline Cavalcante Chaves, Maria Samires Martins Castro, Erica Costa Marcelino, Leopoldo Rugieri Carvalho Vaz da Silva, André Mariano Batista and José Roberto Viana Silva
Animals 2025, 15(15), 2296; https://doi.org/10.3390/ani15152296 - 6 Aug 2025
Viewed by 287
Abstract
This review aims to discuss how heat stress affects ovarian follicles and oocytes, steroidogenesis, and embryo development in ruminants. The literature shows that quiescent primordial follicles appear to be less susceptible to heat stress, but from the primary follicle stage onwards, they begin [...] Read more.
This review aims to discuss how heat stress affects ovarian follicles and oocytes, steroidogenesis, and embryo development in ruminants. The literature shows that quiescent primordial follicles appear to be less susceptible to heat stress, but from the primary follicle stage onwards, they begin to suffer the consequences of heat stress. These adverse effects are exacerbated when the follicles are cultured in vitro. In antral follicles, heat stress reduces granulosa cell viability and proliferation in both in vivo and in vitro models. Oocyte maturation, both nuclear and cytoplasmic, is also compromised, and embryo quality declines under elevated thermal conditions. These effects are linked to intracellular disturbances, including oxidative imbalance, mitochondrial dysfunction, and altered hormonal signaling. The differences between in vivo and in vitro responses reflect the complexity of the biological impact of heat stress and emphasize the protective role of the physiological microenvironment. A better understanding of how heat stress alters the function of ovarian follicles, oocytes, and embryos is crucial. This knowledge is critical to devise effective strategies that mitigate damage, support fertility, and improve outcomes in assisted reproduction for livestock exposed to high environmental temperatures. Full article
(This article belongs to the Special Issue Heat Stress in Animal Oocytes: Impacts, Evaluation, and Alleviation)
Show Figures

Figure 1

Back to TopTop