γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis
Abstract
:1. Introduction
2. Chungkookjang Processing and Bioactive Components
2.1. Bioactive Components According to the Methods of Chungkookjang Processing
2.2. Functionality of Chungkookjang According to Bacillus Species
3. Types and Characteristics of Bacillus Species Isolated from Traditionally Made Chungkookjang
3.1. Toxic Bacillus Species Potentially Existing in Chungkookjang
3.2. Characteristics of Bacillus Species Isolated from Chungkookjang
3.3. Production of γ-PGA in Chungkookjang According to Bacillus Species
3.4. Characteristics of B. subtilis and B. amyloliquefaciens as Probiotics
4. Components of Soybeans that Function as Prebiotics to Reduce the Risk of Metabolic Diseases
4.1. Dietary Fiber
4.2. γ-PGA
4.3. Fermented Soybeans as Prebiotics
5. Protection against Memory Impairment by Chungkookjang by Optimizing Systemic and Brain Glucose Metabolism and Suppressing Neuroinflammation
5.1. Chungkookjang Effect on Memory Impairment
5.2. Chungkookjang Effects on Systemic and Brain Glucose Metabolism
5.3. Chungkookjang Effects on Systemic and Neuroinflammation and Neuronal Survival
6. Improvement of the Gut–Liver–Brain Axis by Chungkookjang
6.1. Chungkookajng Effects on Gut Microbiota and SCFA as Synbiotics
6.2. Chungkookajng Effect on the Gut-Microbiome-Gut-Liver-Brain Axis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nam, Y.D.; Park, S.L.; Lim, S.I. Microbial composition of the Korean traditional food “kochujang” analyzed by a massive sequencing technique. J. Food Sci. 2012, 77, M250–M256. [Google Scholar] [CrossRef]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Jin, H.-E.; Choi, J.-C.; Lim, Y.T.; Sung, M.-H. Prebiotic Effects of Poly-Gamma-Glutamate on Bacterial Flora in Murine Gut. J. Microbiol. Biotechnol. 2017, 27, 412–415. [Google Scholar] [CrossRef]
- Jeong, D.Y.; Daily, J.W.; Lee, G.H.; Ryu, M.S.; Yang, H.-J.; Jeong, S.-Y.; Qiu, J.Y.; Zhang, T.; Park, S. Short-Term Fermented Soybeans with Bacillus amyloliquefaciens Potentiated Insulin Secretion Capacity and Improved Gut Microbiome Diversity and Intestinal Integrity To Alleviate Asian Type 2 Diabetic Symptoms. J. Agric. Food Chem. 2020, 68, 13168–13178. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Jeong, D.-Y.; Kim, D.S.; Park, S. Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients 2018, 10, 1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.J.; Kim, H.J.; Kim, M.J.; Kang, S.; Kim, D.S.; Daily, J.W.; Jeong, D.Y.; Kwon, D.Y.; Park, S. Standardized chungkookjang, short-term fermented soybeans with Bacillus lichemiformis, improves glucose homeostasis as much as traditionally made chungkookjang in diabetic rats. J. Clin. Biochem. Nutr. 2013, 52, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.J.; Kwon, D.Y.; Moon, N.R.; Kim, M.J.; Kang, H.J.; Jung, D.Y.; Park, S. Soybean fermentation with Bacillus licheniformis increases insulin sensitizing and insulinotropic activity. Food Funct. 2013, 4, 1675. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Daily, J.W., 3rd; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 2010, 30, 1–13. [Google Scholar] [CrossRef]
- Clark, J.L.; Taylor, C.G.; Zahradka, P. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds. Nutrients 2018, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Dong, H.; Wang, D.; Gong, J.; Huang, W.; Lu, F. Soy isoflavones and glucose metabolism in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Mol. Nutr. Food Res. 2016, 60, 1602–1614. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Gotto, A.M., Jr.; Atkin, S.L.; Banach, M.; Pirro, M.; Sahebkar, A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: A meta-analysis. J. Clin. Lipidol. 2018, 12, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Daily, J.W. Chapter 6. History, Processing, and Health Benefits of Cheongkukjang. In Korean Functional Foods: Composition, Processing and Health Benefits; Park, K.Y., Kwon, D.Y., Lee, K.W., Park, S., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 147–166. [Google Scholar]
- Wu, Q.; Xu, H.; Shi, N.; Yao, J.; Li, S.; Ouyang, P. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl. Microbiol. Biotechnol. 2008, 79, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Jang, J.S.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, H.R.; Park, S. Long-term consumption of fermented soybean-derived Chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. Eur. J. Nutr. 2007, 46, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, J.E.; Kwak, M.H.; Go, J.; Son, H.J.; Kim, D.S.; Hwang, D.Y. In vitro and in vivo study of effects of fermented soybean product (chungkookjang) on NGF secretion ability and NGF receptor signaling pathway. Lab Anim. Res. 2013, 29, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Back, H.I.; Kim, S.R.; Yang, J.A.; Kim, M.G.; Chae, S.W.; Cha, Y.S. Effects of Chungkookjang supplementation on obesity and atherosclerotic indices in overweight/obese subjects: A 12-week, randomized, double-blind, placebo-controlled clinical trial. J. Med. Food 2011, 14, 532–537. [Google Scholar] [CrossRef]
- Turnbull, P. Chapter 15. Bacillus. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Salkinoja-Salonen, M.S.; Vuorio, R.; Andersson, M.A.; Kämpfer, P.; Andersson, M.C.; Honkanen-Buzalski, T.; Scoging, A.C. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microbiol. 1999, 65, 4637–4645. [Google Scholar] [CrossRef] [Green Version]
- Park, M.R.; Oh, S.; Son, S.J.; Park, D.J.; Oh, S.; Kim, S.H.; Jeong, D.Y.; Oh, N.S.; Lee, Y.; Song, M.; et al. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling. J. Agric. Food Chem. 2015, 63, 10227–10233. [Google Scholar] [CrossRef]
- Yang, H.J.; Kwon, D.Y.; Kim, H.J.; Kim, M.J.; Jung, D.Y.; Kang, H.J.; Kim, D.S.; Kang, S.; Moon, N.R.; Shin, B.K.; et al. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostasis in diabetic rats with experimental Alzheimer’s type dementia. Eur. J. Nutr. 2015, 54, 77–88. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, S.; Jeong, D.; Hahn, K.; Uhm, T. Isolation of Bacillus licheniformis Producing Antimicrobial Agents against Bacillus cereus and Its Properties. Korean J. Microbiol. 2010, 46, 270–277. [Google Scholar]
- Cao, G.; Dai, B.; Wang, K.; Yan, Y.; Xu, Y.; Wang, Y.; Yang, C. Bacillus licheniformis, a potential probiotic, inhibits obesity by modulating colonic microflora in C57BL/6J mice model. J. Appl. Microbiol. 2019, 127, 880–888. [Google Scholar] [CrossRef]
- Shanthi, S.; Jayaseelan, B.D.; Velusamy, P.; Vijayakumar, S.; Chih, C.T.; Vaseeharan, B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathog. 2016, 93, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.S.; Yang, H.-J.; Kim, J.W.; Jeong, S.-J.; Jeong, S.-Y.; Eom, J.-S.; Jeong, D.-Y. Potential probiotics activity of Bacillus spp. from traditional soybean pastes and fermentation characteristics of Cheonggukjang. Korean J. Food Preserv. 2017, 24, 1168–1179. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.M.; Lim, H.-J.; Kim, M.-S.; Kim, D.S.; Hwang, C.E.; Nam, S.H.; Joo, O.S.; Lee, B.W.; Kim, J.K.; Shin, E.-C. Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars. J. Food Drug Anal. 2017, 25, 637–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.Y.; Park, S.-Y.; Jung, K.-O.; Park, K.-Y.; Kim, S.D. Quality and Functional Characteristics of Chungkukjang Prepared with Various Bacillus sp. Isolated from Traditional Chungkukjang. J. Food Sci. 2006, 70, M191–M196. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, K.B.; Cho, Y.H.; Jeong, D.Y.; Yang, H.J.; Ryu, M.S.; Yoo, Y.C. Inhibitory Effect of the Extract of Cheonggukjang Fermented with Bacillus amyloliquefaciens SCGB 1 on LPS-Induced Inflammation and Inflammatory Diseases. J. Korean Soc. Food Sci. Nutr. 2020, 49, 659–667. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Cho, S.-H.; Jeong, D.-Y.; Uhm, T.-B. Isolation of Biogenic Amines-Degrading Strains of Bacillus subtilis and Bacillus amyloliquefaciens from Traditionally Fermented Soybean Products. Korean J. Microbiol. 2012, 48, 220–224. [Google Scholar] [CrossRef]
- Choi, J.-H.; Pichiah, P.; Kim, M.-J.; Cha, Y.-S. Cheonggukjang, a soybean paste fermented with B. licheniformis-67 prevents weight gain and improves glycemic control in high fat diet induced obese mice. J. Clin. Biochem. Nutr 2016, 59, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Xiang, J.; Xiong, F.; Wang, G.; Zou, H.; Li, W.; Li, M.; Wu, S.G. Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella). Fish Shellfish. Immunol. 2020, 97, 344–350. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Liu, H.; Wei, X.; Su, X.; Li, M.; Yuan, J. Oral Supplements of Combined Bacillus licheniformis Zhengchangsheng® and Xylooligosaccharides Improve High-Fat Diet-Induced Obesity and Modulate the Gut Microbiota in Rats. BioMed Res. Int. 2020, 1–17. [Google Scholar] [CrossRef]
- Wang, S.; Hou, Q.; Guo, Q.; Zhang, J.; Sun, Y.; Wei, H.; Shen, L. Isolation and Characterization of a Deoxynivalenol-Degrading Bacterium Bacillus licheniformis YB9 with the Capability of Modulating Intestinal Microbial Flora of Mice. Toxins 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Sha, Y.; Huang, Y.; Zhu, Y.; Sun, T.; Luo, Z.; Qiu, Y.; Zhan, Y.; Lei, P.; Li, S.; Xu, H. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid Based on Stereochemistry Regulation in Bacillus amyloliquefaciens. ACS Synth. Biol. 2020, 9, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Choo, S.; Yang, H.; Jeong, D.; Jeong, S.; Ryu, M.; Oh, K.; Yoo, Y. Immunomodulating Effect of Extract of Cheonggukjang Fermented with Bacillus amyloliquefaciens (SRCM100730) on RAW 264.7 Macrophages. J. Food Sci. Nutr. 2017, 46, 1300–1307. [Google Scholar]
- Park, S.; Kim, D.S.; Kang, S.; Moon, B.R. Fermented soybeans, Chungkookjang, prevent hippocampal cell death and β-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. Exp. Biol. Med. 2015, 241, 296–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef]
- Tang, J.; Wan, Y.; Zhao, M.; Zhong, H.; Zheng, J.; Feng, F. Legume and soy intake and risk of type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2020, 111, 677–688. [Google Scholar] [CrossRef]
- Liu, C.; Lin, X.-L.; Wan, Z.; Zou, Y.; Cheng, F.-F.; Yang, X.-Q. The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls. Food Funct. 2016, 7, 4830–4840. [Google Scholar] [CrossRef]
- Lee, S.M.; Han, H.W.; Yim, S.Y. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Food Funct. 2015, 6, 492–500. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.; Huang, J.; Zhang, H.; Lin, Q.; Han, L.; Liu, J.; Wang, J.; Liu, H. Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. J. Food Sci. Technol. 2020, 57, 152–162. [Google Scholar] [CrossRef]
- Yang, L.; Lin, Q.; Han, L.; Wang, Z.; Luo, M.; Kang, W.; Liu, J.; Wang, J.; Ma, T.; Liu, H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct. 2020, 11, 5965–5975. [Google Scholar] [CrossRef]
- Jeong, D.Y.; Jeong, S.Y.; Zhang, T.; Wu, X.; Qiu, J.Y.; Park, S. Chungkookjang, a soy food, fermented with Bacillus amyloliquefaciens protects gerbils against ischemic stroke injury and post-stroke hyperglycemia. Food Res. Int. 2020, 128, 108769. [Google Scholar] [CrossRef]
- Ogunleye, A.; Bhat, A.; Irorere, V.U.; Hill, D.; Williams, C.; Radecka, I. Poly-γ-glutamic acid: Production, properties, and applications. Microbiology 2015, 161, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; He, Y.; Zhang, F.; Zhao, F.; Huang, C.; Zhang, Y.; Zhao, Q.; Wang, S.; Yang, C. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Microb. Biotechnol. 2019, 12, 932–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhu, X.; Wu, S.; Chen, Y.; Tan, S.; Liu, Y.; Jiang, W.; Huang, J. Fabrication and evaluation of γ-PGA-based self-assembly transferrin receptor-targeting anticancer drug carrier. Int. J. Nanomedicine 2018, 13, 7873–7889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.-W.; Park, Y.-C.; Sung, M.-H.; Park, J.S.; Kim, T.J.; Seong, S.J.; Cho, C.H.; Lee, J.K. Short-term clinical and immunologic effects of poly-gamma-glutamic acid (γ-PGA) in women with cervical intraepithelial neoplasia 1 (CIN 1): A multicenter, randomized, double blind, phase II trial. PLoS ONE 2019, 14, e0217745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, C.T.; Chang, C.H.; Lin, Y.Y.; Wu, M.F.; Wang, J.L.; Han, J.L.; Hsieh, K.H. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr. Res. 2010, 345, 1774–1780. [Google Scholar] [CrossRef]
- Bae, K.-C.; Park, J.-H.; Na, A.-Y.; Kim, S.-J.; Ahn, S.; Kim, S.-P.; Oh, B.-C.; Cho, H.-C.; Kim, Y.W.; Song, D.-K. Effect of Green Tea Extract/Poly-γ-Glutamic Acid Complex in Obese Type 2 Diabetic Mice. Diabetes Metab. J. 2013, 37, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, T.; Kimura, J.; Takeuchi, Y.; Uyama, H.; Park, C.; Sung, M.-H. Chelation of calcium ions by poly(gamma-glutamic acid) from Bacillus subtilis(chungkookjang). J. Microbiol. Biotechnol. 2010, 20, 1436–1439. [Google Scholar] [CrossRef]
- Ajayeoba, T.; Dula, S.; Ijabadeniyi, O.A. Properties of Poly-γ-Glutamic Acid Producing-Bacillus Species Isolated From Ogi Liquor and Lemon-Ogi Liquor. Front. Microbiol. 2019, 10, 771. [Google Scholar] [CrossRef]
- Ho, G.-H.; Ho, T.-I.; Hsieh, K.-H.; Su, Y.-C.; Lin, P.-Y.; Yang, J.; Yang, K.-H.; Yang, S.-C. γ-Polyglutamic Acid Produced by Bacillus Subtilis (Natto): Structural Characteristics, Chemical Properties, and Biological Functionalities. J. Chin. Chem. Soc. 2006, 53, 1363–1384. [Google Scholar] [CrossRef]
- Jeon, Y.H.; Kwak, M.-S.; Sung, M.-H.; Kim, S.-H.; Kim, M.-H.; Chang, M.-J. High-Molecular-Weight Poly-Gamma-Glutamate Protects Against Hypertriglyceridemic Effects of a High-Fructose Diet in Rat. J. Microbiol. Biotechnol. 2013, 23, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.; Hoshi, C.; Kimura, Y.; Suzuki, T.; Yamamoto-Maeda, M. Effects of γ-Polyglutamic Acid on the Cecal Microbiota and Visceral Fat in KK-A TaJcl Male Mice. Food Sci. Technol. Res. 2018, 24, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Lim, H.; Heo, M.Y.; Kwon, D.Y.; Kim, H.P. Anti-Inflammatory Activity of the Ethanol Extract of Chungkukjang, Korean Fermented Bean: 5-Lipoxygenase Inhibition. J. Med. Food 2008, 11, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, S. Long-term Consumption of Fermented Soybean-derived Chungkookjang Attenuates Hepatic Insulin Resistance in 90% Pancreatectomized Diabetic Rats. Horm. Metab. Res. 2007, 39, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Van Der Velpen, V.; Teav, T.; Gallart-Ayala, H.; Mehl, F.; Konz, I.; Clark, C.; Oikonomidi, A.; Peyratout, G.; Henry, H.; Delorenzi, M.; et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimer’s Res. Ther. 2019, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Wu, H.M.; Lee, C.G.; Sung, D.I.; Song, H.J.; Matsui, T.; Kim, H.B.; Kim, S.G. Specific oligopeptides in fermented soybean extract inhibit NF-κB-dependent iNOS and cytokine induction by toll-like receptor ligands. J. Med. Food 2014, 17, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Matulewicz, N.; Karczewska-Kupczewska, M. Insulin resistance and chronic inflammation. Postępy Higieny i Medycyny Doświadczalnej 2016, 70, 1245–1258. [Google Scholar]
- Park, S.; Kim, D.S.; Kang, S.; Moon, N.R. β-Amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing β-cell mass in non-diabetic and diabetic rats. Metabolism 2013, 62, 1749–1760. [Google Scholar] [CrossRef]
- Nugent, S.; Croteau, E.; Pifferi, F.; Fortier, M.; Tremblay, S.; Turcotte, E.; Cunnane, S. Brain and systemic glucose metabolism in the healthy elderly following fish oil supplementation. Prostaglandins, Leukot. Essent. Fat. Acids 2011, 85, 287–291. [Google Scholar] [CrossRef]
- Magnoni, S.; Tedesco, C.; Carbonara, M.; Pluderi, M.; Colombo, A.; Stocchetti, N. Relationship between systemic glucose and cerebral glucose is preserved in patients with severe traumatic brain injury, but glucose delivery to the brain may become limited when oxidative metabolism is impaired: Implications for glycemic control. Crit. Care Med. 2012, 40, 1785–1791. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Wey, H.Y.; Liang, Y.; Chen, Z.; Choi, S.H.; Ran, C.; Rynearson, K.D.; Bernales, D.R.; Koegel, R.E.; et al. Molecular imaging of Alzheimer’s disease-related gamma-secretase in mice and nonhuman primates. J. Exp. Med. 2020, 217, e20182266. [Google Scholar] [CrossRef]
- Heng, Y.; Kim, M.J.; Yang, H.J.; Kang, S.; Park, S. Lactobacillus intestinalis efficiently produces equol from daidzein and chungkookjang, short-term fermented soybeans. Arch. Microbiol. 2019, 201, 1009–1017. [Google Scholar] [CrossRef]
- Johnson, S.L.; Park, H.Y.; Vattem, D.A.; Grammas, P.; Ma, H.; Seeram, N.P. Equol, a Blood–Brain Barrier Permeable Gut Microbial Metabolite of Dietary Isoflavone Daidzein, Exhibits Neuroprotective Effects against Neurotoxins Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells and Caenorhabditis elegans. Plant Foods Hum. Nutr. 2020, 75, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.E.; Lim, J.; Kim, I.; Kim, D.; Kang, S.C. Isolation and identification of new bacterial stains producing equol from Pueraria lobata extract fermentation. PLOS ONE 2018, 13, e0192490. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Park, J.-H.; Lee, S.; Lee, S.; Lee, J.; Yun, E.-Y.; Jeong, W.-S.; Jun, M. BACE1 Inhibition by Genistein: Biological Evaluation, Kinetic Analysis, and Molecular Docking Simulation. J. Med. Food 2018, 21, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ramasamy, K.; Majeed, A.B.A.; Mani, V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm. Biol. 2014, 53, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Hwang, Y.-H.; Kim, D.-H. Lactobacillus plantarum C29-Fermented Soybean (DW2009) Alleviates Memory Impairment in 5XFAD Transgenic Mice by Regulating Microglia Activation and Gut Microbiota Composition. Mol. Nutr. Food Res. 2018, 62, e1800359. [Google Scholar] [CrossRef]
- Schubert, M.; Brazil, D.P.; Burks, D.J.; Kushner, J.A.; Ye, J.; Flint, C.L.; Farhang-Fallah, J.; Dikkes, P.; Warot, X.M.; Rio, C.; et al. Insulin Receptor Substrate-2 Deficiency Impairs Brain Growth and Promotes Tau Phosphorylation. J. Neurosci. 2003, 23, 7084–7092. [Google Scholar] [CrossRef] [Green Version]
- Jhala, U.S.; Canettieri, G.; Screaton, R.A.; Kulkarni, R.N.; Krajewski, S.; Reed, J.; Walker, J.; Lin, X.; White, M.; Montminy, M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003, 17, 1575–1580. [Google Scholar] [CrossRef] [Green Version]
- Sanders, O.D.; Rajagopal, L. Phosphodiesterase Inhibitors for Alzheimer’s Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J. Alzheimer’s Dis. Rep. 2020, 4, 185–215. [Google Scholar] [CrossRef]
- Singh, A.; Yau, Y.F.; Leung, K.S.; El-Nezami, H.; Lee, J.C. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain–Liver–Gut Axis. Antioxidants 2020, 9, 669. [Google Scholar] [CrossRef]
- Mithieux, G. Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production. Nutrición Hospitalaria 2013, 28, 109–114. [Google Scholar] [PubMed]
- Beraza, N.; Trautwein, C. The gut-brain-liver axis: A new option to treat obesity and diabetes? Hepatology 2008, 48, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- De, J.R.D.-P.V.; Forlenza, A.S.; Forlenza, O.V. Relevance of gut microbiota in cognition, behavior, and Alzheimer’s disease. Pharmacol. Res. 2018, 136, 29–34. [Google Scholar]
- Wang, S.Z.; Yu, Y.J.; Adeli, K. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 2020, 8, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.-L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Covasa, M.; Stephens, R.W.; Toderean, R.; Cobuz, C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front. Endocrinol. 2019, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Bliss, E.S.; Whiteside, E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front. Physiol. 2018, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Kim, D.S.; Park, S. Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats. Nutr. Metab. 2012, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [Green Version]
B. amyloliquefaciens | B. subtilis | Soybeans | |||
---|---|---|---|---|---|
SCGB 1 | SRCM 100730 | SRCM 100731 | SCGB 574 | ||
Number of bacteria (CFU/g) | 2.2 × 1010 ± 2.6 × 109 | 2.6 × 109 ± 1.4 × 108 | 4.7 × 109 ± 2.8 × 108 | 1.5 × 109 ± 1.2 × 108 | 5.0 × 103 ± 2.6 × 102 |
Number of B. cereus (CFU/g) | - | - | - | - | 4.2 × 103 |
γ-PGA (cm) | 31 ± 0.86 | 27 ± 1.00 | 30 ± 0.57 | 55 ± 1.00 | 0 ± 0 |
Flavor | ++ | ++ | ++ | ++ | - |
Protease activity (cm) | 2.84 ± 0.04 | 1.94 ± 0.08 | 1.92 ± 0.12 | 2.29 ± 0.04 | 1.76 ± 0.01 |
Cellulase activity (cm) | 2.08 ± 0.04 | 1.58 ± 0.04 | 1.44 ± 0.04 | 1.95 ± 0.07 | 1.78 ± 0.04 |
Amylase activity(cm) | 2.84 ± 0.04 | 2.29 ± 0.05 | 2.42 ± 0.11 | 2.29 ± 0.04 | 1.99 ± 0.01 |
Thrombolytic activity (halo size, cm) | 1.83 ± 0.06 | 3.85 ± 0.02 | 4.07 ± 0.14 | 1.97 ± 0.15 | - |
B. amyloliquefaciens | B. subtilis | |||
---|---|---|---|---|
SCGB 1 | SRCM 100730 | SRCM 100731 | SCGB 574 | |
Survival rate in pH 2.0 (%) | 0.45 ± 0.03 | 1.40 ± 0.11 | 6.91 ± 0.43 | 0.09 ± 0.11 |
Survival rate in pH 7.0 (%) | 100 | 100 | 100 | 100 |
Survival rate in oxagall 0.3% (%) | 19.83 ± 1.80 | 35.04 ± 1.74 | 20.18 ± 4.22 | 30.00 ± 3.17 |
Survival rate in oxagall 0.6% (%) | 1.04 ± 0.11 | 57.97 ± 8.05 | 18.75 ± 4.09 | 3.29 ± 1.09 |
Tauro-deoxycholic acid hydrolysis activity (mm) | - | - | - | - |
Glyco-deoxycholic acid hydrolysis activity (mm) | - | - | - | - |
Antibacterial activity against B. cereus KCTC3624 (cm) | 1.8 ± 0.3 | 1.4 ± 0.1 | 1.3 ± 0.1 | 1.8 ± 0.1 |
Antibacterial activity against B. cereus KCCM40935 (cm) | 1.8 ± 0.17 | 1.4 ± 0.2 | 1.3 ± 0.11 | 2.0 ± 0.06 |
Antibacterial activity against S. aureus KCCM11593 (cm) | 1.5 ± 0.1 | 1.1 ± 0.17 | 1 ± 0.15 | No effect |
Antibacterial activity against S. aureus KCCM41331 (cm) | 1.0 ± 0.00 | 1.0 ± 0.1 | 1.0 ± 0.10 | 1.3 ± 0.1 |
Production of anti-bacterial components Surfactin | +++ | +++ | +++ | +++ |
Iturin A | + | +++ | +++ | ++ |
Bacillomycin D | +++ | +++ | +++ | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.-Y.; Ryu, M.S.; Yang, H.-J.; Park, S. γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis. Foods 2021, 10, 221. https://doi.org/10.3390/foods10020221
Jeong D-Y, Ryu MS, Yang H-J, Park S. γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis. Foods. 2021; 10(2):221. https://doi.org/10.3390/foods10020221
Chicago/Turabian StyleJeong, Do-Youn, Myeong Seon Ryu, Hee-Jong Yang, and Sunmin Park. 2021. "γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis" Foods 10, no. 2: 221. https://doi.org/10.3390/foods10020221
APA StyleJeong, D.-Y., Ryu, M. S., Yang, H.-J., & Park, S. (2021). γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis. Foods, 10(2), 221. https://doi.org/10.3390/foods10020221