Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Community Profile: Loreto Region, Peruvian Amazon
2.2. Project Background and Conceptual Framework
2.3. Qualitative Data Collection
2.4. Qualitative Data Analysis
2.5. Quantitative Data Collection and Analysis
2.6. Ethical Considerations
3. Results
3.1. Shawi Climate Change Observations
3.2. Climate/Weather Change Impacts on Shawi
3.3. Preparedness, Adaptation Options, and Challenges
“Sometimes you feel very warm and you want to bathe in the river, but the water is too hot. It is more refreshing at night around nine or ten. This did not happen before; there were more trees beside the riverbank and everything was different. We have done this to the environment. It would be nice if we could reforest and plant large trees”.(TWP5)
“We must call the authorities from each community. Here we are twenty communities that live in the Armanayacu area. We should all meet in a community and talk about how to get more water care. We can have a talk about the best care of water and water safety, such as not fishing, not throwing garbage in the river, not cutting trees for clearing chacras [farms] along the river … for taking care of fresh water so it is not like this in these times … as the water is warmer, right now the water is getting too hot … That is why all community authorities must talk with the [municipal] authorities to teach us about how not to contaminate the river”.(FGM1)
“[We should] ask for educational training in water and river contamination, fishing, and avoiding throwing dead rotten animals into the river. [Government authorities] should train community authorities, so they can teach our community information about well-being”.(TWP10)
“It feels as if we are squeezing the last drops of milk from the cow [referencing lack of groundwater collected via wells] … I do not know what the situation will be like here in the next five years, we have to be planning for the long term, not just the next twenty years … This is a very deep problem at a health and educational level, but there are no government plans or policies”.(I3)
“There is a tree called aguaje that keeps inside enough water, it is an indirect way to monitor the amount of underground water. Unfortunately, the aguaje has diminished lately. This could be that the aguaje is indicating to me that underground water is missing”.(I4)
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Pereira, J.P. Foreword Technical and Preface. (Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems); IPCC: Geneva, Switzerland, 2019; pp. 35–74. [Google Scholar]
- Diaz, S.; Settele, J.; Brondizio, E.; Ngo, H.T.; Gueze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Available online: https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (accessed on 15 March 2020).
- IPCC. IPCC special report on climate change and land—Summary for policy makers. In Research Handbook on Climate Change and Agricultural Law; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 423–449. [Google Scholar]
- Wang, H.; Horton, R. Tackling climate change: The greatest opportunity for global health. Lancet 2015, 386, 1798–1799. [Google Scholar] [CrossRef]
- Woodward, A.; Smith, K.R.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.; Revich, B.; Sauerborn, R.; Chafe, Z.; et al. Climate change and health: On the latest IPCC report. Lancet 2014, 383, 1185–1189. [Google Scholar] [CrossRef]
- United Nations. UN-Water Climate Change Adaptation: The Pivotal Role of Water; United Nations: New York, NY, USA, 2010; pp. 1–18. [Google Scholar]
- The, L. Health systems for prosperity and solidarity: Tallinn 2018. Lancet 2018, 391, 2475. [Google Scholar] [CrossRef]
- Watts, G. The health benefits of tackling climate change—An executive summary for the lancet series. 2009. Available online: https://www.thelancet.com/pb/assets/raw/Lancet/stories/series/health-and-climate-change.pdf (accessed on 20 March 2020).
- Gill, M.; Stott, R. Health professionals must act to tackle climate change. Lancet 2009, 374, 1953–1955. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Capstick, S.; et al. The 2019 report of the lancet countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 2019, 394, 1836–1878. [Google Scholar] [CrossRef] [Green Version]
- UNU-INWEH. UN-Water Water Security & the Global Water Agenda; UNU-INWEH: Hamilton, ON, Canada, 2013; ISBN 9789280860382. [Google Scholar]
- Watts, N.; Adger, W.N.; Agnolucci, P. Changement climatique: Agir au nom de la santé publique. Environ. Risques Sante 2015, 14, 466–468. [Google Scholar]
- Wojtkowiak, S. Climate Change, Water and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Karen, B. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar]
- Cook, B.; Zeng, N.; Yoon, J.-H. Will amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Chan, S.; Gillian, C.; Lincoln, K.; Jose, M.A.; Chagas, D.J.; Gomes, J.L.; Bustamante, J.F.; Tavares, P. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, Sao Francisco and the Parana River basins. Clim. Dyn. 2012, 38, 1829–1848. [Google Scholar] [CrossRef]
- Kovats, R.S.; Campbell-Lendrum, D.; Matthies, F. Climate change and human health: Estimating avoidable deaths and disease. Risk Anal. 2005, 25, 1409–1418. [Google Scholar] [CrossRef]
- Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W. Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol. Earth Syst. Sci. 2013, 17, 2247–2262. [Google Scholar] [CrossRef] [Green Version]
- Duffy, P.B.; Brando, P.; Asner, G.P.; Field, C.B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 2015, 112, 13172–13177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marengo, J.; Nobre, C.A.; Betts, R.A.; Cox, P.M.; Sampaio, G.; Salazar, L. Global Warming and Climate Change in Amazonia: Climate-Vegetation Feedback and Impacts on Water Resources; American Geophysical Union: Washington, DC, USA, 2009; pp. 273–292. [Google Scholar] [CrossRef]
- Bodmer, R.; Mayor, P.; Antunez, M.; Chota, K.; Fang, T.; Puertas, P.; Pittet, M.; Kirkland, M.; Walkey, M.; Rios, C.; et al. Major shifts in Amazon wildlife populations from recent intensification of floods and drought. Conserv. Biol. 2018, 32, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Eguiguren-Velepucha, P.A.; Chamba, J.A.M.; Aguirre Mendoza, N.A.; Ojeda-Luna, T.L.; Samaniego-Rojas, N.S.; Furniss, M.J.; Howe, C.; Aguirre Mendoza, Z.H. Tropical ecosystems vulnerability to climate change in southern Ecuador. Trop. Conserv. Sci. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Prevedello, J.A.; Winck, G.R.; Weber, M.M.; Nichols, E.; Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookes, J.D.; Carey, C.C. Ensure availability and sustainable management of water and sanitation for all. UN Chron. 2015, 51, 15–16. [Google Scholar] [CrossRef]
- Chan, M. Achieving a cleaner, more sustainable, and healthier future. Lancet 2015, 386, e27–e28. [Google Scholar] [CrossRef]
- McGinnis, S.M.; McKeon, T.; Desai, R.; Ejelonu, A.; Laskowski, S.; Murphy, H.M. A systematic review: Costing and financing ofwater, sanitation, and hygiene (WASH) in schools. Int. J. Environ. Res. Public Health 2017, 14, 442. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.S.; Patz, J. Emerging Threats to Human Health from Global Environmental Change. Annu. Rev. Environ. Rsour. 2009, 34, 223–252. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, J. A Review of the Evidence Base for WASH Interventions in Emergency Responses/Relief Operations - Executive Summary; Atkins: Epsom, UK, 2009; pp. 1–51. [Google Scholar]
- Sapkota, A.R. Water reuse, food production and public health: Adopting transdisciplinary, systems-based approaches to achieve water and food security in a changing climate. Environ. Res. 2019. [Google Scholar] [CrossRef]
- Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am. J. Public Health 2001, 91, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Sargeant, J.M.; Edge, V.L.; Ford, J.D.; Farahbakhsh, K.; RICG; Shiwak, I.; Flowers, C.; IHACC Research Team; Harper, S.L. Water quality and health in northern Canada: Stored drinking water and acute gastrointestinal illness in Labrador Inuit. Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Frumkin, H.; Holloway, T.; Vimont, D.J.; Haines, A. Climate change: Challenges and opportunities for global health. J. Am. Med. Assoc. 2014, 312, 1565–1580. [Google Scholar] [CrossRef] [PubMed]
- Santa Cruz, F.; Mujica, M.; Álvarez, J.; Leslie, J. Informe Sobre Desarrollo Humano Perú 2013. Cambio Climático Y Territorio: Desafíos Y Respuestas Para Un Futuro Sostenible; Programa de las Naciones Unidas para el Desarrollo PNUD: Lima, Perú, 2013. [Google Scholar]
- Marengo, J.A.; Jones, R.; Alves, L.M.; Valverde, M.C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 2009, 29, 2241–2255. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Tomasella, J.; Soares, W.R.; Alves, L.M.; Nobre, C.A. Extreme climatic events in the Amazon basin. Theor. Appl. Climatol. 2012, 107, 73–85. [Google Scholar] [CrossRef]
- Lavado Casimiro, W.S.; Labat, D.; Guyot, J.L.; Ardoin-Bardin, S. Assessment of climate change impacts on the hydrology of the Peruvian Amazon—Andes basin. Hydrol. Process. 2011, 25, 3721–3734. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Crane, R.J.; Jones, K.D.J.; Berkley, J.A. Environmental enteric dysfunction: An overview. Food Nutr. Bull. 2015, 36. [Google Scholar] [CrossRef]
- UN News. UN Adopts New Global Goals, Charting Sustainable Development for People and Planet by 2030. Available online: https://news.un.org/en/story/2015/09/509732-un-adopts-new-global-goals-charting-sustainable-development-people-and-planet (accessed on 15 March 2020).
- Ki-moon, U.N.S.B. Water and sanitation: Addressing inequalities. Lancet 2014, 383, 1359. [Google Scholar]
- McLeman, R.; Smit, B. Migration as an adaptation to climate change. Clim. Chang. 2006, 76, 31–53. [Google Scholar] [CrossRef]
- Huamán Rodríguez, G. Los Pueblos Indígenas de la Amazonía Peruana: Pueblos Indígenas e Inversión en el Territorio Ancestral; Peter Lang: Bern, Switzerland, 2016; ISBN 978-3631670101. [Google Scholar] [CrossRef]
- Stephens, C.; Porter, J.; Willis, R.; Clark, S.; Nettleton, C. Indigenous people’s health-why are they behind everyone, everywhere? Lancet 2005, 366, 10–13. [Google Scholar] [CrossRef]
- Stephens, C.; Porter, J.; Nettleton, C.; Willis, R. Disappearing, displaced, and undervalued: A call to action for Indigenous health worldwide. Lancet 2006, 367, 2019–2028. [Google Scholar] [CrossRef]
- Ford, J.D. Indigenous health and climate change. Am. J. Public Health 2012, 102, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- King, M.; Smith, A.; Gracey, M. Indigenous health part 2: The underlying causes of the health gap. Lancet 2009, 374, 76–85. [Google Scholar] [CrossRef]
- San Sebastián, M.; Hurtig, A.K. Review of health research on indigenous populations in Latin America, 1995–2004. Salud Publica Mexico 2007, 49, 316–320. [Google Scholar] [CrossRef]
- Ford, J.D.; Cameron, L.; Rubis, J.; Maillet, M.; Nakashima, D.; Willox, A.C.; Pearce, T. Including indigenous knowledge and experience in IPCC assessment reports. Nat. Clim. Chang. 2016, 6, 349–353. [Google Scholar] [CrossRef]
- Ford, J.D.; Vanderbilt, W.; Berrang-Ford, L. Authorship in IPCC AR5 and its implications for content: Climate change and Indigenous populations in WGII. Clim. Chang. 2011, 113, 201–213. [Google Scholar] [CrossRef] [Green Version]
- David-Chavez, D.M.; Gavin, M.C. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett. 2018, 13, 123005. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Bartram, J.; Cairncross, S. Hygiene, sanitation, and water: Forgotten foundations of health. PLoS Med. 2010, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.; Prüss-Ustün, A.; Cumming, O.; Bartram, J.; Bonjour, S.; Cairncross, S.; Clasen, T.; Colford, J.M.; Curtis, V.; De France, J.; et al. Systematic review: Assessing the impact of drinking water and sanitation on diarrhoeal disease in low- and middle-income settings: Systematic review and meta-regression. Trop. Med. Int. Heal. 2014, 19, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Hofmeijer, I.; Ford, J.D.; Berrang-Ford, L.; Zavaleta, C.; Carcamo, C.; Llanos, E.; Carhuaz, C.; Edge, V.; Lwasa, S.; Namanya, D. Community vulnerability to the health effects of climate change among indigenous populations in the Peruvian Amazon: A case study from Panaillo and Nuevo Progreso. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 957–978. [Google Scholar] [CrossRef]
- Sherman, M.; Ford, J.; Llanos-Cuentas, A.; Valdivia, M.J.; Bussalleu, A. Vulnerability and adaptive capacity of community food systems in the Peruvian Amazon: A case study from Panaillo. Nat. Hazards 2015, 77, 2049–2079. [Google Scholar] [CrossRef] [Green Version]
- Dirección General de Epidemiología. ASIS del Pueblo Shawi 2008; MINSA: Lima, Perú, 2008. [Google Scholar]
- Torres-Slimming, P.A.; Wright, C.; Carcamo, C.P.; Garcia, P.J.; IHACC Research Team; Harper, S.L. Achieving the sustainable development goals: A mixed methods study of health-related water, sanitation, and hygiene (WASH) for indigenous shawi in the peruvian amazon. Int. J. Environ. Res. Public Health 2019, 16, 2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odonne, G.; Valadeau, C.; Alban-Castillo, J.; Stien, D.; Sauvain, M.; Bourdy, G. Medical ethnobotany of the Chayahuita of the Paranapura basin (Peruvian Amazon). J. Ethnopharmacol. 2013, 146, 127–153. [Google Scholar] [CrossRef] [PubMed]
- Odonne, G.; Bourdy, G.; Castillo, D.; Estevez, Y.; Lancha-Tangoa, A.; Alban-Castillo, J.; Deharo, E.; Rojas, R.; Stien, D.; Sauvain, M. Ta‘ta’, Huayani: Perception of leishmaniasis and evaluation of medicinal plants used by the Chayahuita in Peru. Part II. J. Ethnopharmacol. 2009, 126, 149–158. [Google Scholar] [CrossRef]
- Gutiérrez-Velez, V.H.; Uriarte, M.; Defries, R.; Pinedo-Vasquez, M.; Fernandes, K.; Ceccato, P.; Baethgen, W.; Padoch, C. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Ecol. Appl. 2014, 24, 1323–1340. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Charron, D.F. Ecohealth Research in Practice: Innovative Applications of an Ecosystem Approach to Health; International Development Research Centre and Springer: Ottawa, ON, Canada, 2012; ISBN 9781552505298. [Google Scholar]
- Lebel, J. Focus: Health: An Ecosystem Approach; IDRC: Ottawa, ON, Canada, 2003; Volume 15, ISBN 9788578110796. [Google Scholar]
- Sherman, M.; Berrang-Ford, L.; Ford, J.; Lardeau, M.P.; Hofmeijer, I.; Cortijo, C.Z. Balancing indigenous principles and institutional research guidelines for informed consent: A case study from the Peruvian Amazon. AJOB Prim. Res. 2012, 3, 53–68. [Google Scholar] [CrossRef]
- Budig, K.; Diez, J.; Conde, P.; Sastre, M.; Hernán, M.; Franco, M. Photovoice and empowerment: Evaluating the transformative potential of a participatory action research project. BMC Public Health 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahiri, I. Comparing transect walks with experts and local people. PLA Notes 1998, 31, 4–8. [Google Scholar]
- Staden, D.; van Rogers, E.; Makaudi, I.; Winkler, J.; White, J.; Kangale, M.; Rudman, N.; Nkosi, S.; Dreyer, T.R.; Coetzer, T. A Transect Walk Undertaken in Itereleng Informal Settlement to Observe Community Vulnerability. Available online: https://sswm.info/node/2013 (accessed on 20 March 2020).
- Barbour, R.S. Checklists for improving rigour in qualitative research: A case of the tail wagging the dog? BMJ 2001, 322, 1115–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charmaz, K. Grounded theory method. In Grounded Theory for Qualitative Research: A Practical Guide; Gubrium, J.F., Ed.; Sage Publications: New York, NY, USA, 2008; pp. 397–412. ISBN 13 978-1593853051. [Google Scholar]
- Boeije, H. A purposeful approach to the constant comparative method in the analysis of qualitative interviews. Qual. Quant. 2002, 36, 391–409. [Google Scholar] [CrossRef]
- Teherani, A.; Martimianakis, T.; Stenfors-Hayes, T.; Wadhwa, A.; Varpio, L. Choosing a qualitative research approach. J. Grad. Med. Educ. 2015, 7, 669–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patton, M.Q. Enhancing the quality and credibility of qualitative analysis. Health Serv. Res. 1999, 34, 1189–1208. [Google Scholar] [PubMed]
- Morse, J.M. Approaches to qualitative-quantitative methodological triangulation. Nurs. Res. 2015, 40, 120–123. [Google Scholar] [CrossRef]
- Flick, U. Trend report etat de la question qualitative research ± state of the art. Soc. Sci. Inf. 2002, 41, 5–24. [Google Scholar] [CrossRef]
- DeCuir-Gunby, J.T.; Marshall, P.L.; McCulloch, A.W. Developing and using a codebook for the analysis of interview data: An example from a professional development research project. Field Methods 2011, 23, 136–155. [Google Scholar] [CrossRef]
- Fereday, J.; Muir-Cochrane, E. Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Methods 2006, 5, 80–92. [Google Scholar] [CrossRef]
- Tong, A.; Sainsbury, P.; Craig, J. Consolidated criterio for reporting qualitative research (COREQ): A 32- item checklist for interviews and focus group. Int. J. Qual. Health Care 2007, 19, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, B.C.; Harris, I.B.; Beckman, T.J.; Reed, D.A.; Cook, D.A. Standards for reporting qualitative research: A synthesis of recommendations. Acad. Med. 2014, 89, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Creswell, J.; Miller, D. Determining validity in qualitative inquiry. Theory Pract. 2000, 39, 124–130. [Google Scholar] [CrossRef]
- Bull, J.R. Research with Aboriginal peoples: Authentic relationships as a precursor to ethical research. J. Empir. Res. Hum. Res. Ethics 2010, 5, 13–22. [Google Scholar] [CrossRef]
- Koster, R.; Baccar, K.; Lemelin, R.H. Moving from research ON, to research with and for indigenous communities: A critical reflection on community-based participatory research. Can. Geogr. 2012, 56, 195–210. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Marengo, J.A.; Ronchail, J.; Carpio, J.M.; Flores, L.N.; Guyot, J.L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9, 12. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Barber, C.P. Climate change, human land use and future fires in the Amazon. Glob. Chang. Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Laurance, W.F.; Camargo, J.L.C.; Luizão, R.C.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Williamson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L.; et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar] [CrossRef]
- Yoon, J.H.; Zeng, N. An Atlantic influence on Amazon rainfall. Clim. Dyn. 2010, 34, 249–264. [Google Scholar] [CrossRef]
- Perz, S.G.; Aramburú, C.; Bremner, J. Population, land use and deforestation in the pan Amazon basin: A comparison of Brazil, Bolivia, Colombia, Ecuador, Perú and Venezuela. Environ. Dev. Sustain. 2005, 7, 23–49. [Google Scholar] [CrossRef] [Green Version]
- López-Carr, D.; Burgdorfer, J. Deforestation drivers: Population, migration, and tropical land use. Environment 2013, 55, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowski, M. Nearing the Tipping Point: Drivers of Deforestation in the Amazon Region; Inter-American Dialogue: Washington, WA, USA, 2019. [Google Scholar]
- Salati, E.; Vose, P.B. Amazon basin: A system in equilibrium. Science 1984, 225, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirif, A.; Álvarez, J.; Timothy, A.; Luisa, B.; Belaunde, E.; Martín, M.; Hugo, B.; Juan, C.; Dammert, L.; Cañas, C.; et al. Peru: Deforestation in Times of Climate Change; IWGIA: Lima, Perú, 2019; ISBN 9788792786951. [Google Scholar]
- De Wit, F.C.A. Polycentric Climate Governance and the Amazon Tipping Point. 2018, pp. 19–26. Available online: https://www.scitepress.org/Papers/2018/68202/68202.pdf (accessed on 15 March 2020).
- Lovejoy, T.E.; Nobre, C. Amazon tipping point. Sci. Adv. 2018, 4, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, P.-S.; Yu, Z.-P.; Hastenrath, S. Detecting climate change concurrent with deforestation in the Amazon basin: Which way has it gone? Bull. Am. Meteorol. Soc. 2002, 75, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Markandya, A.; Armstrong, B.G.; Hales, S.; Chiabai, A.; Criqui, P.; Mima, S.; Tonne, C.; Wilkinson, P. Public health benefits of strategies to reduce greenhouse-gas emissions: Low-carbon electricity generation. Lancet 2009, 374, 2006–2015. [Google Scholar] [CrossRef]
- Mandle, L.; Tallis, H.; Sotomayor, L.; Vogl, A.L. Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon. Front. Ecol. Environ. 2015, 13, 309–315. [Google Scholar] [CrossRef]
- Reyes-garcía, V.; Paneque-gálvez, J.; Bottazzi, P.; Luz, A.C.; Gueze, M.; Macía, M.J.; Orta-martínez, M.; Pacheco, P. Indigenous land recon fi guration and fragmented institutions: A historical political ecology of Tsimane’ lands (Bolivian Amazon). J. Rural Stud. 2014, 34, 282–291. [Google Scholar] [CrossRef]
- Avilez, J.L.; Bazalar, J.; Azañedo, D.; Miranda, J.J. Peru, climate change and non-communicable diseases: ¿Where are we and where are we headed? Rev. Peru. Med. Exp. Salud Publica 2016, 33, 143–148. [Google Scholar] [CrossRef] [Green Version]
Sociodemographic Characteristics | n (%) |
---|---|
Number of household respondents in Community A | 52 (81.2) |
Number of household respondents in Community B | 12 (18.8) |
Household respondent was male | 51 (80.9) |
Age of respondent in years | 40.2 (14.2) * |
Number of households receiving government cash transfer assistance | 53 (82.8) |
People per house | 5.1 (2.1) * |
Adults per house | 2.3 (0.9) * |
Children per house | 2.8 (1.8) * |
Labor activities | n (%) |
Number of respondents participating in agriculture activities | 63 (98.4) |
Number of households with children participating in work activities | 47 (73.4) |
Climate/Weather Change Observations | n (%) |
---|---|
Of those who observed changes in seasonal climate/weather patterns over time (n = 50): | |
Reported time period of observed changes | |
5 years | 9 (18.0) |
10 years | 17 (34.0) |
>15 years | 10 (20.0) |
Unsure | 14 (28.0) |
Observed changes in seasonal and/or climate/weather patterns over time | |
Rains less often | 2 (4.0) |
Rain is more intense, longer in duration, and/or results in flooding | 29 (58.0) |
Air temperature is warmer | 4 (8.0) |
No clear changes observed | 15 (30.0) |
Labor activities were affected by changes in climate/weather | |
No | 3 (6.0) |
Yes | 47 (94.0) |
Water change observations | n (%) |
Of those who observed changes in river water over time (n = 42): | |
Types of observed changes in river water overtime | |
The water level in the river is higher | 35 (83.3) |
The water level in the river is lower | 5 (11.4) |
The river water is dirtier and sandier | 2 (4.8) |
Climate/weather change preparedness/adaptation options | n (%) |
Household respondent reported that their family or community had received support to respond to climate/weather events (e.g., government, NGO, n = 64) | |
No | 54 (84.4) |
Yes | 10 (15.6) |
Household respondent reported that measures, at the household or community level, were taken to respond to climate/weather events (n = 64) | |
No | 61 (95.3) |
Yes | 3 (4.7) |
Household Did Not Report Observed Changes in Seasonal Weather Patterns over Time n = 14 | Household Reported Observed Changes in Seasonal Weather Patterns over Time n = 50 | P * | |
---|---|---|---|
Sociodemographic Variables of Respondent | n (%) | n (%) | |
Community | |||
A | 14 (100.0) | 38 (76.0) | 0.054 |
B | 0 (0.0) | 12 (24.0) | |
Gender | |||
Male | 10 (71.4) | 41 (82.0) | 0.457 |
Female | 4 (28.6) | 9 (18.0) | |
Weather-related variables | |||
Household, family, or community received support to respond to climate events | |||
No | 14 (100.0) | 38 (76.0) | 0.054 |
Yes | 0 (0.0) | 12 (24.0) | |
Changes in resources that would most affect daily life and the health of your family | |||
Changes or deterioration in water | 3 (21.4) | 21 (42.0) | 0.371 |
Changes or deterioration in forest | 3 (21.4) | 8 (16.0) | |
Changes or deterioration in food | 8 (57.2) | 21 (42.0) | |
Water-related observations ** | |||
Observed changes in river water over time | |||
No | 9 (64.3) | 13 (26.0) | 0.012 |
Yes | 5 (35.7) | 37 (74.0) | |
Observed changes in river water | |||
The water level in the river is higher | 6 (42.9) | 29 (58.0) | 0.578 |
The water level in the river is lower | 1 (7.1) | 4 (8.0) | |
The river water is dirtier and sandier | 0 (0.00) | 2 (4.0) | |
No clear changes observed | 7 (50.0) | 15 (30.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Slimming, P.A.; Wright, C.J.; Lancha, G.; Carcamo, C.P.; Garcia, P.J.; Ford, J.D.; IHACC Research Team; Harper, S.L. Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon. Sustainability 2020, 12, 3422. https://doi.org/10.3390/su12083422
Torres-Slimming PA, Wright CJ, Lancha G, Carcamo CP, Garcia PJ, Ford JD, IHACC Research Team, Harper SL. Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon. Sustainability. 2020; 12(8):3422. https://doi.org/10.3390/su12083422
Chicago/Turabian StyleTorres-Slimming, Paola A., Carlee J. Wright, Guillermo Lancha, Cesar P. Carcamo, Patricia J. Garcia, James D. Ford, IHACC Research Team, and Sherilee L. Harper. 2020. "Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon" Sustainability 12, no. 8: 3422. https://doi.org/10.3390/su12083422
APA StyleTorres-Slimming, P. A., Wright, C. J., Lancha, G., Carcamo, C. P., Garcia, P. J., Ford, J. D., IHACC Research Team, & Harper, S. L. (2020). Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon. Sustainability, 12(8), 3422. https://doi.org/10.3390/su12083422