Calcium Pyrophosphate and Basic Calcium Phosphate Crystal Arthritis: 2023 in Review
Abstract
:1. Introduction
2. CPP Crystals
2.1. ACR/EULAR 2023 Classification Criteria
2.2. Imaging
2.3. Therapeutics
3. BCP Crystals
4. Osteoarthritis and Cartilage Calcifications
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCarthy, G.M.; Dunne, A. Calcium crystal deposition diseases—Beyond gout. Nat. Rev. Rheumatol. 2018, 14, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Abhishek, A.; Tedeschi, S.K.; Pascart, T.; Latourte, A.; Dalbeth, N.; Neogi, T.; Fuller, A.; Rosenthal, A.; Becce, F.; Bardin, T.; et al. The 2023 ACR/EULAR Classification Criteria for Calcium Pyrophosphate Deposition Disease. Arthritis Rheumatol. 2023, 75, 1703–1713. [Google Scholar] [CrossRef]
- Zhang, W.; Doherty, M.; Bardin, T.; Barskova, V.; Guerne, P.A.; Jansen, T.L.; Leeb, B.F.; Perez-Ruiz, F.; Pimentao, J.; Punzi, L.; et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: Terminology and diagnosis. Ann. Rheum. Dis. 2011, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, E.; Filippou, G.; Scire, C.A.; Di Matteo, A.; Di Battista, J.; Salaffi, F.; Grassi, W.; Filippucci, E. The diagnostic value of conventional radiography and musculoskeletal ultrasonography in calcium pyrophosphate deposition disease: A systematic literature review and meta-analysis. Osteoarthr. Cartil. 2021, 29, 619–632. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Becce, F.; Pascart, T.; Guermazi, A.; Budzik, J.F.; Dalbeth, N.; Filippou, G.; Iagnocco, A.; Kohler, M.J.; Laredo, J.D.; et al. Imaging Features of Calcium Pyrophosphate Deposition Disease: Consensus Definitions From an International Multidisciplinary Working Group. Arthritis Care Res. 2023, 75, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Filippou, G.; Scire, C.A.; Damjanov, N.; Adinolfi, A.; Carrara, G.; Picerno, V.; Toscano, C.; Bruyn, G.A.; D’Agostino, M.A.; Delle Sedie, A.; et al. Definition and Reliability Assessment of Elementary Ultrasonographic Findings in Calcium Pyrophosphate Deposition Disease: A Study by the OMERACT Calcium Pyrophosphate Deposition Disease Ultrasound Subtask Force. J. Rheumatol. 2017, 44, 1744–1749. [Google Scholar] [CrossRef] [PubMed]
- Sirotti, S.; Becce, F.; Sconfienza, L.M.; Terslev, L.; Naredo, E.; Zufferey, P.; Pineda, C.; Gutierrez, M.; Adinolfi, A.; Serban, T.; et al. Reliability and Diagnostic Accuracy of Radiography for the Diagnosis of Calcium Pyrophosphate Deposition: Performance of the Novel Definitions Developed by an International Multidisciplinary Working Group. Arthritis Rheumatol. 2023, 75, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Sirotti, S.; Terslev, L.; Filippucci, E.; Iagnocco, A.; Moller, I.; Naredo, E.; Vreju, F.A.; Adinolfi, A.; Becce, F.; Hammer, H.-B.; et al. Development and validation of an OMERACT ultrasound scoring system for the extent of calcium pyrophosphate crystal deposition at the joint level and patient level. Lancet Rheumatol. 2023, 5, E474–E482. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, A.; Sirotti, S.; Sakellariou, G.; Cipolletta, E.; Filippucci, E.; Porta, F.; Zanetti, A.; Ughi, N.; Sarzi-Puttini, P.; Scire, C.A.; et al. Which are the most frequently involved peripheral joints in calcium pyrophosphate crystal deposition at imaging? A systematic literature review and meta-analysis by the OMERACT ultrasound—CPPD subgroup. Front. Med. 2023, 10, 1131362. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, E.; Filippucci, E.; Abhishek, A.; Di Battista, J.; Smerilli, G.; Di Carlo, M.; Silveri, F.; De Angelis, R.; Salaffi, F.; Grassi, W.; et al. In patients with acute mono/oligoarthritis, a targeted ultrasound scanning protocol shows great accuracy for the diagnosis of gout and CPPD. Rheumatology 2023, 62, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Jarraya, M.; Guermazi, A.; Liew, J.W.; Tolstykh, I.; Lynch, J.A.; Aliabadi, P.; Felson, D.T.; Clancy, M.; Nevitt, M.; Lewis, C.E.; et al. Prevalence of intra-articular mineralization on knee computed tomography: The multicenter osteoarthritis study. Osteoarthr. Cartil. 2023, 31, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, S.K.; Huang, W.; Yoshida, K.; Solomon, D.H. Risk of cardiovascular events in patients having had acute calcium pyrophosphate crystal arthritis. Ann. Rheum. Dis. 2022, 81, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Pascart, T.; Robinet, P.; Ottaviani, S.; Leroy, R.; Segaud, N.; Pacaud, A.; Grandjean, A.; Luraschi, H.; Rabin, T.; Deplanque, X.; et al. Evaluating the safety and short-term equivalence of colchicine versus prednisone in older patients with acute calcium pyrophosphate crystal arthritis (COLCHICORT): An open-label, multicentre, randomised trial. Lancet Rheumatol. 2023, 5, E523–E531. [Google Scholar] [CrossRef] [PubMed]
- Venegas, F.C.; Sanchez-Rodriguez, R.; Luisetto, R.; Angioni, R.; Viola, A.; Canton, M. Oxidative Stress by the Mitochondrial Monoamine Oxidase B Mediates Calcium Pyrophosphate Crystal-Induced Arthritis. Arthritis Rheumatol. 2024, 76, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Chhana, A.; Pool, B.; Callon, K.E.; Naot, D.; Gao, R.; Coleman, B.; Cornish, J.; McCarthy, G.M.; Dalbeth, N. Basic calcium phosphate crystals induce the expression of extracellular matrix remodelling enzymes in tenocytes. Rheumatology 2023, 62, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Stassen, R.; van den Akker, G.G.H.; Surtel, D.A.M.; Housmans, B.A.C.; Cremers, A.; Caron, M.M.J.; Smagul, A.; Peffers, M.J.; van Rhijn, L.W.; Welting, T.J.M. Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome: A role for TGF-beta signaling. Osteoarthr. Cartil. 2023, 31, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Kluck, V.; Boahen, C.K.; Kischkel, B.; Dos Santos, J.C.; Matzaraki, V.; Boer, C.G.; van Meurs, J.B.J.; Genetics of Osteoarthritis (GO) Consortium; Schraa, K.; Lemmers, H.; et al. A functional genomics approach reveals suggestive quantitative trait loci associated with combined TLR4 and BCP crystal-induced inflammation and osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1022–1034. [Google Scholar] [CrossRef]
- Boer, C.G.; Hatzikotoulas, K.; Southam, L.; Stefansdottir, L.; Zhang, Y.; Coutinho de Almeida, R.; Wu, T.T.; Zheng, J.; Hartley, A.; Teder-Laving, M.; et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021, 184, 4784–4818.e4717. [Google Scholar] [CrossRef]
- Neogi, T.; Nevitt, M.; Niu, J.; LaValley, M.P.; Hunter, D.J.; Terkeltaub, R.; Carbone, L.; Chen, H.; Harris, T.; Kwoh, K.; et al. Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: Results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Latourte, A.; Rat, A.C.; Ngueyon Sime, W.; Ea, H.K.; Bardin, T.; Mazieres, B.; Roux, C.; Guillemin, F.; Richette, P. Chondrocalcinosis of the Knee and the Risk of Osteoarthritis Progression: Data From the Knee and Hip Osteoarthritis Long-term Assessment Cohort. Arthritis Rheumatol. 2020, 72, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Foreman, S.C.; Gersing, A.S.; von Schacky, C.E.; Joseph, G.B.; Neumann, J.; Lane, N.E.; McCulloch, C.E.; Nevitt, M.C.; Link, T.M. Chondrocalcinosis is associated with increased knee joint degeneration over 4 years: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2020, 28, 201–207. [Google Scholar] [CrossRef]
- Ibad, H.A.; Kwee, R.M.; Ghotbi, E.; Roemer, F.W.; Guermazi, A.; Demehri, S. Radiographically detectable intra-articular mineralization: Predictor of knee osteoarthritis outcomes or only an indicator of aging? A brief report from the osteoarthritis initiative. Osteoarthr. Cartil. Open 2023, 5, 100348. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Frampton, C.; Patel, S.; White, D.; Arad, U. Acute Calcium Pyrophosphate Crystal Arthritis is Associated with an Increased Rate of Hip and Knee Joint Surgery. Rheumatology 2024, 63, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.; Lohmann, C.H.; Dell’Accio, F.; Goettsch, C.; Bertrand, J. Sortilin Is Upregulated in Osteoarthritis-Dependent Cartilage Calcification and Associated with Cellular Senescence. Int. J. Mol. Sci. 2023, 24, 12343. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.; Stücker, S.; Koßlowski, F.; Lohmann, C.H.; Bertrand, J. High-Resolution Imaging Methods for Identification of Calcium Crystal Types in Osteoarthritis. Gout Urate Cryst. Depos. Dis. 2023, 1, 62–82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latourte, A.; Ea, H.-K.; Richette, P. Calcium Pyrophosphate and Basic Calcium Phosphate Crystal Arthritis: 2023 in Review. Gout Urate Cryst. Depos. Dis. 2024, 2, 101-107. https://doi.org/10.3390/gucdd2020010
Latourte A, Ea H-K, Richette P. Calcium Pyrophosphate and Basic Calcium Phosphate Crystal Arthritis: 2023 in Review. Gout, Urate, and Crystal Deposition Disease. 2024; 2(2):101-107. https://doi.org/10.3390/gucdd2020010
Chicago/Turabian StyleLatourte, Augustin, Hang-Korng Ea, and Pascal Richette. 2024. "Calcium Pyrophosphate and Basic Calcium Phosphate Crystal Arthritis: 2023 in Review" Gout, Urate, and Crystal Deposition Disease 2, no. 2: 101-107. https://doi.org/10.3390/gucdd2020010
APA StyleLatourte, A., Ea, H.-K., & Richette, P. (2024). Calcium Pyrophosphate and Basic Calcium Phosphate Crystal Arthritis: 2023 in Review. Gout, Urate, and Crystal Deposition Disease, 2(2), 101-107. https://doi.org/10.3390/gucdd2020010