Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Thermo, Volume 5, Issue 1 (March 2025) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
3 pages, 136 KiB  
Editorial
Reflecting on the Progress and Future of Thermo
by Johan Jacquemin
Thermo 2025, 5(1), 12; https://doi.org/10.3390/thermo5010012 - 20 Mar 2025
Viewed by 384
Abstract
As we embark on a new chapter in 2025, it is with immense pride and gratitude that we reflect on the remarkable journey of Thermo (ISSN 2673-7264; [...] Full article
11 pages, 719 KiB  
Article
Thermochemical Characterization of Sulfur-Containing Furan Derivatives: Experimental and Theoretical Study
by Luísa M. P. F. Amaral and Manuel A. V. Ribeiro da Silva
Thermo 2025, 5(1), 11; https://doi.org/10.3390/thermo5010011 - 18 Mar 2025
Viewed by 136
Abstract
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These [...] Read more.
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These experimental results allowed for the calculation of standard molar enthalpies of formation in the gas phase at 298.15 K. Theoretical calculations using high-level quantum chemical methods (G3) were performed to complement the experimental data. A comparison between experimental and theoretical values revealed good agreement, validating the computational approach. This study enhances the understanding of the energetic properties of sulfur furan derivatives, contributing reliable thermochemical data to existing databases and aiding in the development of predictive models for related molecular systems. Full article
Show Figures

Figure 1

17 pages, 11943 KiB  
Article
Assessing the Feasibility of Integrating a Thermal Separational Method with PV Recycling Technologies
by Gergely Balázs Patthy, Zsófia Závodi-Fodor and Miklós Jakab
Thermo 2025, 5(1), 10; https://doi.org/10.3390/thermo5010010 - 14 Mar 2025
Viewed by 515
Abstract
The growing volume of end-of-life photovoltaic (PV) panels, projected to reach 60–78 million tons by 2050, poses significant environmental challenges. With landfilling being the most cost-effective but unsustainable disposal method, developing eco-friendly processes to recover valuable materials is essential. One potential solution for [...] Read more.
The growing volume of end-of-life photovoltaic (PV) panels, projected to reach 60–78 million tons by 2050, poses significant environmental challenges. With landfilling being the most cost-effective but unsustainable disposal method, developing eco-friendly processes to recover valuable materials is essential. One potential solution for recovering raw materials from PV panels is thermal treatment. Therefore, in this study, PV modules were heat-treated at a low heating rate, and their components were manually separated with an average efficiency of 90%. The recovered silicon wafers and tempered glass sheets were utilized to fabricate new PV panels using lamination technology. The applied heating parameters enabled the cells to be removed from the PV panels without structural damage. However, the results of electroluminescence tests showed that thermal treatment significantly damages the p-n junctions, rendering direct reuse in new panels unfeasible. The thermal separation methods outlined in this study offer valuable opportunities for industries employing various PV-panel-recycling technologies. These methods lay the groundwork for environmentally responsible management and recovery of materials from end-of-life solar panels, advancing sustainable recycling practices. Full article
Show Figures

Figure 1

18 pages, 5794 KiB  
Article
A Novel Capacitive Model of Radiators for Building Dynamic Simulations
by Francesco Calise, Francesco Liberato Cappiello, Luca Cimmino, Massimo Dentice d’Accadia and Maria Vicidomini
Thermo 2025, 5(1), 9; https://doi.org/10.3390/thermo5010009 - 11 Mar 2025
Viewed by 533
Abstract
This study addresses the critical challenge of performing a detailed calculation of energy savings in buildings by implementing suitable actions aiming at reducing greenhouse gas emissions. Given the high energy consumption of buildings’ space heating systems, optimizing their performance is crucial for reducing [...] Read more.
This study addresses the critical challenge of performing a detailed calculation of energy savings in buildings by implementing suitable actions aiming at reducing greenhouse gas emissions. Given the high energy consumption of buildings’ space heating systems, optimizing their performance is crucial for reducing their overall primary energy demand. Unfortunately, the calculations of such savings are often based on extremely simplified methods, neglecting the dynamics of the emitters installed inside the buildings. These approximations may lead to relevant errors in the estimation of the possible energy savings. In this framework, the present study presents a novel 0-dimensional capacitive model of a radiator, the most common emitter used in residential buildings. The final scope of this paper is to integrate such a novel model within the TRNSYS 18simulation environment, performing a 1-year simulation of the overall building-space heating system. The radiator model is developed in MATLAB 2024b and it carefully considers the impact of surface area, inlet temperature, and flow rate on the radiator performance. Moreover, the dynamic heat transfer rate of the capacitive radiator is compared with the one returned by the built-in non-capacitive model available in TRNSYS, showing that neglecting the capacitive effect of radiators leads to an incorrect estimation of the heating consumption. During the winter season, with a heating system turned on from 8 a.m. to 4 p.m. and from 6 p.m. to 8 p.m., the thermal energy is underestimated by roughly 20% with the commonly used non-capacitive model. Full article
(This article belongs to the Special Issue Innovative Technologies to Optimize Building Energy Performance)
Show Figures

Figure 1

16 pages, 1235 KiB  
Article
Power and Energy Requirements for Carbon Capture and Sequestration
by Efstathios E. Michaelides
Thermo 2025, 5(1), 8; https://doi.org/10.3390/thermo5010008 - 2 Mar 2025
Viewed by 432
Abstract
Carbon capture and sequestration have been recently presented as a viable option to reduce atmospheric carbon dioxide emissions and mitigate global climate change. The concept entails the capture, compression, transportation, and injection of the gas into a medium suitable for storage. This paper [...] Read more.
Carbon capture and sequestration have been recently presented as a viable option to reduce atmospheric carbon dioxide emissions and mitigate global climate change. The concept entails the capture, compression, transportation, and injection of the gas into a medium suitable for storage. This paper examines the thermodynamic and transport properties of carbon dioxide that are pertinent to its sequestration and storage, describes the various methods that have been recommended for its separation from the mixture of the flue gases, and determines the mechanical power and heat rate required for the capture of the gas. The power required for the compression and transportation of the gas by a pipeline is also determined, as well as the effect of the ambient temperature on the transportation power. Calculations for the total power required are performed for two cases, one a cement production unit and the second a coal power plant. The mechanical power needed for the sequestration of CO2 is substantial in both cases, with the cement unit needing less power because of the availability of high-temperature waste heat. In both cases, the equivalent mechanical work needed for the sequestration and storage of this gas is on the order of 1 MJ per kg CO2 sequestered. Full article
Show Figures

Figure 1

21 pages, 1753 KiB  
Article
Nusselt Number Dependence on Friction Factor in the Boundary Slip Flow of a Newtonian Liquid Between Parallel Plates
by Krishna Kota, Sarada Kuravi and Prasanna Jayaramu
Thermo 2025, 5(1), 7; https://doi.org/10.3390/thermo5010007 - 17 Feb 2025
Viewed by 551
Abstract
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which [...] Read more.
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which are typically difficult to measure in experimental settings. The primary objectives of investigating the relationship between the Nusselt number and the friction factor were twofold: (1) to uncover the previously unknown mathematical connection (or analogy) between momentum transfer and heat transfer in the presence of boundary slip and (2) to enable predictions of either the pressure drop or the heat transfer coefficient by measuring just one of these quantities, thus simplifying experimental procedures. Considering the difficulty of conducting experiments of this type of flow (as described in the published literature), a finite element-based numerical model built in COMSOL Multiphysics software was used to validate the theoretically developed relationship over a wide range of Reynolds numbers and boundary slip values. While surface modifications like dimples, bumps, and ribs typically modify both the Nusselt number and pressure drop, leading to their increase for a given fluid and constant inlet Reynolds number, their behavior changes when boundary slip is present, particularly in cases where there is a low temperature jump at the wall. The analysis identified a specific threshold for the dimensionless temperature jump below which the Nusselt number with boundary slip will exceed 8.235. Furthermore, the analysis showed that for the Nusselt number to rise above 8.235, the non-dimensional velocity slip must be at least 3.19 times larger than the non-dimensional temperature jump. This means that the velocity slip has to be significantly larger than the temperature jump to achieve enhanced heat transfer in boundary slip flows. Full article
Show Figures

Figure 1

12 pages, 4884 KiB  
Article
Design and Implementation of Multi-Channel Temperature Measurement System of Thermal Test Chip Based on Diode Temperature-Sensitive Arrays
by Lina Ju, Peng Jiang, Xing Zhou, Ruiwen Liu, Yanmei Kong, Yuxin Ye, Binbin Jiao, Honglin Sun and Fan Wei
Thermo 2025, 5(1), 6; https://doi.org/10.3390/thermo5010006 - 12 Feb 2025
Viewed by 597
Abstract
When chips perform numerous computational tasks or process complex instructions, they generate substantial heat, potentially affecting their long-term reliability and performance. Thus, accurate and effective temperature measurement and management are crucial to ensuring chip performance and lifespan. This paper presents a multi-channel temperature [...] Read more.
When chips perform numerous computational tasks or process complex instructions, they generate substantial heat, potentially affecting their long-term reliability and performance. Thus, accurate and effective temperature measurement and management are crucial to ensuring chip performance and lifespan. This paper presents a multi-channel temperature measurement system based on a diode temperature-sensitive array thermal test chip (TTC). The thermal test chip accurately emulates the heat power and thermal distribution of the target chip, providing signal output through row and column address selection. The multi-channel temperature measurement system centers around a microcontroller and includes voltage signal acquisition circuits and host computer software. It enables temperature acquisition, storage, and real-time monitoring of 16 channels in a 4 × 4 array thermal test chip. During experiments, the system uses a constant current source to drive temperature-sensitive diodes, collects diode output voltage through multiplexers and high-precision amplification circuits, and converts analog signals to digital signals via a high-speed ADC. Data transmission occurs via the USB 2.0 protocol, with the host computer software handling data processing and real-time display. The test results indicate that the system accurately monitors chip temperature changes in both steady-state and transient thermal response tests, closely matching measurements from a semiconductor device analyzer, with an error of about 0.67%. Therefore, this multi-channel temperature measurement system demonstrates excellent accuracy and real-time monitoring capability, providing an effective solution for the thermal design and evaluation of high power density integrated circuits. Full article
Show Figures

Figure 1

14 pages, 1583 KiB  
Article
Thermodynamic Model of a Gas Turbine Considering Atmospheric Conditions and Position of the IGVs
by Tarik Boushaki and Kacem Mansouri
Thermo 2025, 5(1), 5; https://doi.org/10.3390/thermo5010005 - 7 Feb 2025
Viewed by 667
Abstract
Gas turbines are widely used in power generation due to their efficiency, flexibility, and low environmental impact. Modeling, especially in thermodynamics, is crucial for the designer and operator of a gas turbine. An advanced and rigorous thermodynamic model is essential to accurately predict [...] Read more.
Gas turbines are widely used in power generation due to their efficiency, flexibility, and low environmental impact. Modeling, especially in thermodynamics, is crucial for the designer and operator of a gas turbine. An advanced and rigorous thermodynamic model is essential to accurately predict the performance of a gas turbine under on-design operating conditions, off-design or failure. Such models not only improve understanding of internal processes but also optimize performance and reliability in a wide variety of operational scenarios. This article presents the development of a thermodynamic model simulating the off-design performance of a gas turbine. The mathematical relationships established in this model allow for quick calculations while requiring a limited amount of data. Only nominal data are required, and some additional data are needed to calibrate the model on the turbine under study. A key feature of this model is the development of an innovative relationship that allows direct calculation of the mass flow of air entering the turbine and, thus, the performances of the turbine according to atmospheric conditions (such as pressure, temperature, and relative humidity) and the position of the compressor inlet guide vanes (IGV). The results of the simulations, obtained using code implemented in MATLAB (R2014a), demonstrate the efficiency of the model compared to experimental data. Indeed, the model relationships exhibit high determination coefficients (R2 > 0.95) and low root mean square errors (RMSE). Specifically, the simulation results for the air mass flow rate demonstrate a very high determination coefficient (R2 = 0.9796) and a low root mean square error (RMSE = 0.0213). Full article
Show Figures

Figure 1

20 pages, 6372 KiB  
Article
Numerical Analysis of Transient Burn Injury Grading Through Coupled Heat Transfer and Damage Integral Modeling
by Chao Zhang, Xinbin Ma, Mengxi Li, Yubin Qiu, Moon Keun Kim and Jiying Liu
Thermo 2025, 5(1), 4; https://doi.org/10.3390/thermo5010004 - 4 Feb 2025
Viewed by 912
Abstract
The accurate assessment of parameters such as burn degree, volume, and depth is a prerequisite for the effective treatment of patients. However, as an unsteady heat transfer process, the temperature of the burn damage volume changes over time, and it is difficult to [...] Read more.
The accurate assessment of parameters such as burn degree, volume, and depth is a prerequisite for the effective treatment of patients. However, as an unsteady heat transfer process, the temperature of the burn damage volume changes over time, and it is difficult to accurately calculate the integral value of the damage, which is used to assess the burn degree. Therefore, it is impossible to accurately determine the location and volume of damage at all burn degrees. In this study, the C language is used to program a user-defined function of the burn damage integral formula, and the coupled numerical simulation method is used to calculate the heat transfer and damage in a high-temperature water burn process. Then, the temperature and burn damage integral value of each point can be determined to accurately assess and distinguish the burn degree in real time, and estimate the position distribution, volume size, and transient change trend of each burn degree. Under the working conditions selected in this paper, the heat source mainly affects the epidermis and dermis directly below, and has less influence on the area above, which is in convective heat transfer. The damage integral value is very sensitive to temperature, and the highest damage integral value caused by 373 K is two and four orders of magnitude higher than that of 363 K and 353 K, respectively. The increase in the heat source temperature caused the volume of a third-degree burn to increase rapidly in the early stage of injury, but the volume of second-degree and first-degree burns did not change much. After heating at 373 K for 15 s and delaying the action for 45 s, the volume of first-, second-, and third-degree burns accounted for 0.4, 2.9, and 1.9%, respectively, and the total volume of damage accounted for only 5.2% of the total volume. Full article
Show Figures

Figure 1

19 pages, 1568 KiB  
Article
Energy and Exergy Analyses Applied to a Crop Plant System
by Heba Alzaben and Roydon Fraser
Thermo 2025, 5(1), 3; https://doi.org/10.3390/thermo5010003 - 30 Jan 2025
Viewed by 836
Abstract
The second law of thermodynamics investigates the quality of energy, or in other words exergy, described as the maximum useful to the dead-state work. The objective of this paper is to investigate the energy and exergy flows in a crop plant system in [...] Read more.
The second law of thermodynamics investigates the quality of energy, or in other words exergy, described as the maximum useful to the dead-state work. The objective of this paper is to investigate the energy and exergy flows in a crop plant system in order to identify the dominant flows and parameters (e.g., temperature) affecting crop plant development. The need for energy and exergy analyses arises from the hypothesis that crop stress can be detected via surface temperature measurements, as explained by the exergy destruction principle (EDP). Based on the proposed energy model, it is observed that radiation and transpiration terms govern all other terms. In addition, as a result of exergy analysis, it is observed that solar exergy governs all input and output terms. The results obtained from this study support the hypothesis that crop surface temperature can be utilized as an indicator to detect crop stress. Full article
Show Figures

Figure 1

2 pages, 387 KiB  
Correction
Correction: Rabi’ et al. Packed Bed Thermal Energy Storage System: Parametric Study. Thermo 2024, 4, 295–314
by Ayah Marwan Rabi’, Jovana Radulovic and James M. Buick
Thermo 2025, 5(1), 2; https://doi.org/10.3390/thermo5010002 - 17 Jan 2025
Viewed by 351
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

19 pages, 4625 KiB  
Article
Optimal Design Parameters for Supercritical Steam Power Plants
by Victor-Eduard Cenușă and Ioana Opriș
Thermo 2025, 5(1), 1; https://doi.org/10.3390/thermo5010001 - 16 Jan 2025
Viewed by 1222
Abstract
Steam thermal power plants represent important energy production systems. Within the energy mix, these could allow flexible generation and the use of hybrid systems by integrating renewables. The optimum design solution and parameters allow higher energy efficiency and lower environmental impact. This paper [...] Read more.
Steam thermal power plants represent important energy production systems. Within the energy mix, these could allow flexible generation and the use of hybrid systems by integrating renewables. The optimum design solution and parameters allow higher energy efficiency and lower environmental impact. This paper analyzes single reheat supercritical steam power plants design solutions using a genetic heuristic algorithm. A multi-objective optimization was made to find the Pareto frontier that allows the maximization of the thermal cycle net efficiency and minimization of the specific investment in the power plant equipment. The Pareto population was split and analyzed depending on the total number of preheaters. The mean values and the standard deviations were found for the objective functions and main parameters. For the thermal cycle schemes with eight preheaters, the average optimal thermal cycle efficiency is (48.09 ± 0.16)%. Adding a preheater increases the average optimal thermal cycle efficiency by 0.64%, but also increases the average optimum specific investments by 7%. It emphasized the importance of choosing a proper ratio between the reheating and the main steam pressure. Schemes with eight and nine preheaters have an average optimum value of 0.178 ± 0.021 and 0.220 ± 0.011, respectively. The results comply with data from the literature. Full article
(This article belongs to the Special Issue Innovative Technologies to Optimize Building Energy Performance)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop