Previous Issue
Volume 5, June
 
 

Photochem, Volume 5, Issue 3 (September 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 124
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

19 pages, 1683 KiB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Viewed by 217
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

11 pages, 6478 KiB  
Article
Observation of Blue Particles Formed by Photosensitizing Reaction on Paper Fibres of Cyanotypes
by Sawako Sentoku, Mari Kurashina and Keiko Kida
Photochem 2025, 5(3), 18; https://doi.org/10.3390/photochem5030018 - 23 Jul 2025
Viewed by 188
Abstract
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically [...] Read more.
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically with the application of water. The manner in which Prussian blue is fixed onto the paper substrate is important for determining the treatment method. This study is the first step toward clarifying this mechanism. The presence of Prussian blue in cyanotypes was first confirmed using X-ray diffraction analysis (XRD). Then, the location of Prussian blue in the fibre was confirmed using optical microscopy and micro-Raman spectroscopy analysis, by observing the blue colour and by detecting its cyanide bond. With field-emission scanning electron microscopy (FE-SEM), particles approximately 20–100 nm in size were observed on the surface of cyanotype paper fibres, and particles approximately 20–50 nm in size were observed from the cross-section of the paper fibres. The location where the particles were observed agreed with the location where the blue colour was observed and cyanide bond was detected. The fact that the sensitiser solution soaked into the paper fibres and formed Prussian blue within the paper fibres when exposed to light is thought to be important for the blue fixation of cyanotypes. Full article
Show Figures

Figure 1

32 pages, 2931 KiB  
Review
Phototoxicity of Quinolones and Fluoroquinolones: A Mechanistic Review About Photophysical and Photochemical Pathways
by Elisa Leyva, Silvia E. Loredo-Carrillo, Irving R. Rodríguez-Gutiérrez, Denisse de Loera, Gabriela Navarro-Tovar and Lluvia I. López
Photochem 2025, 5(3), 17; https://doi.org/10.3390/photochem5030017 - 1 Jul 2025
Viewed by 416
Abstract
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of [...] Read more.
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of resistant bacterial strains. On the other side, some of these heterocyclic compounds have shown several adverse effects such as photocarcinogenic cutaneous reactions, with the development of skin tumors. These adverse properties have motivated a large number of studies on the photophysical, photochemical and phototoxic properties of these compounds. In this review, several important chemical aspects about quinolones and fluoroquinolones are discussed. In the first sections, their basic structure is presented, along with some important physicochemical properties. In the next sections, their photochemical and photophysical processes are discussed. Upon photolysis in aqueous neutral conditions, these heterocyclic compounds generate several highly reactive intermediates that could initiate diverse reactions with molecules. In a biological environment, quinolones and fluoroquinolones are known to associate with biomolecules and generate complexes. Within these complexes, photophysical and photochemical processes generate intermediates, accelerating diverse reactions between biomolecules and these heterocyclic compounds. For several decades, diverse fluoroquinolones have been prepared for the treatment of a variety of bacterial infections. However, their prescription has been restricted due to the associated severe side effects. In the last decade, new derivatives have been developed and are already in use. Their introduction into actual practice extends the number of antibiotics and provides new options for difficult-to-treat infections. Thus, for new pharmaceutical compounds to be used in medicinal practice, it is important to investigate their biological activity, as well as other biological properties and adverse effects, such as phototoxicity. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Scheme 1

Previous Issue
Back to TopTop