Previous Issue
Volume 5, June
 
 

Photochem, Volume 5, Issue 3 (September 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 3570 KB  
Article
Characterizing the Excited States and Electronic Absorption Spectra of Small Alkylperoxy (RO2•) and Hydroperoxy (•QOOH) Radicals
by Lily M. Guidry, Sofia E. Guidry, Tanima Barua, Barbara Marchetti, Michael F. Vansco and Tolga N. V. Karsili
Photochem 2025, 5(3), 26; https://doi.org/10.3390/photochem5030026 - 11 Sep 2025
Abstract
Organic peroxy (ROO•) and hydroperoxy (•QOOH) radicals are key reactive intermediates that are formed via the oxidation of volatile organic compounds during combustion or in the Earth’s atmosphere. Their primary fate is continued unimolecular decay or bimolecular chemistry, the relative branching for which [...] Read more.
Organic peroxy (ROO•) and hydroperoxy (•QOOH) radicals are key reactive intermediates that are formed via the oxidation of volatile organic compounds during combustion or in the Earth’s atmosphere. Their primary fate is continued unimolecular decay or bimolecular chemistry, the relative branching for which is heavily structure- and temperature-dependent. This article outlines a combined single- and multi-reference quantum chemical study to characterize the near-UV accessible electronically excited states of the prototypical ROO• and •QOOH intermediates, tert-butyl peroxy and hydroperoxy-tert-butyl radicals—the ground-state chemistries of which have been well studied both experimentally and computationally. Additionally, we simulate the electronic absorption profiles of these ROO• and •QOOH intermediates with a variety of multi- and single-reference methods. The results show an interesting conformer dependence on the electronically excited-state character and electronic absorption maxima of •QOOH. The results show promise for electronic absorption spectroscopy to be used as a selected probe for determining •QOOH conformers. Additionally, electronic absorption may contribute to the daytime removal of long-lived •QOOH intermediates formed in the troposphere. We expect that our studies will motivate experiments on the electronic absorption spectra of experimentally achievable ROO• and •QOOH. Full article
Show Figures

Figure 1

13 pages, 1633 KB  
Article
Stimuli-Responsive Luminescence of an Amphiphilic Flavin Derivative via Thermodynamic and Kinetic Aggregation in Water
by Soichiro Kawamorita, Koyo Okamoto, Shufang Huang and Takeshi Naota
Photochem 2025, 5(3), 25; https://doi.org/10.3390/photochem5030025 - 8 Sep 2025
Viewed by 124
Abstract
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like [...] Read more.
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like aggregates were formed, leading to a yellow emission. In contrast, under rapid freezing conditions, fibrous aggregates were formed under kinetic control, which also exhibited a yellow emission. These distinct aggregation modes are attributed to the cooperative effects of molecular design: the π-stacking ability of the tricyclic isoalloxazine core, flexible long alkyl chains, and the hydrophilic sulfonate moiety. This work demonstrates photoluminescent color switching based on aggregation-state control of a biogenic and potentially sustainable flavin luminophore, offering a new perspective for designing responsive and sustainable photofunctional materials. Full article
(This article belongs to the Special Issue Photochemistry Directed Applications of Organic Fluorescent Materials)
Show Figures

Figure 1

9 pages, 673 KB  
Article
Measuring the Efficiency of Using Raman Photoexcitation to Generate Singlet Oxygen in Distilled Water
by Aristides Marcano Olaizola
Photochem 2025, 5(3), 24; https://doi.org/10.3390/photochem5030024 - 8 Sep 2025
Viewed by 146
Abstract
We determine the efficiency of generating singlet oxygen molecules through Raman excitation in distilled water. Focused nanosecond light pulses in the spectral blue region induce a Raman transition toward the singlet oxygen state, generating a Stokes signal in the red spectral region. The [...] Read more.
We determine the efficiency of generating singlet oxygen molecules through Raman excitation in distilled water. Focused nanosecond light pulses in the spectral blue region induce a Raman transition toward the singlet oxygen state, generating a Stokes signal in the red spectral region. The signal is proportional to the number of photons corresponding to the number of excited oxygen molecules. We calculate the efficiency by dividing the number of generated singlet oxygen molecules by the number of incoming pump photons, determining an efficiency of (8 ± 2) × 10−5 for water when pumping at 410 nm with a pulse energy of 13 mJ. We demonstrate that the Raman method results in no photobleaching, a phenomenon typically observed when photosensitizers are used. Thanks to this property, Raman excitation can continue for as long as the sample is irradiated, generating more singlet oxygen molecules over time than the photosensitization method. Full article
Show Figures

Figure 1

34 pages, 7715 KB  
Review
Tetraphenylethylene (TPE)-Based AIE Luminogens: Recent Advances in Bioimaging Applications
by Vanam Hariprasad, Kavya S. Keremane, Praveen Naik, Dickson D. Babu and Sunitha M. Shivashankar
Photochem 2025, 5(3), 23; https://doi.org/10.3390/photochem5030023 - 4 Sep 2025
Viewed by 312
Abstract
Aggregation-induced emission (AIE) luminogens are materials that exhibit enhanced light emission in the aggregated state, primarily due to the restriction of intramolecular motions, which reduces energy loss through non-radiative pathways. Tetraphenylethylene (TPE) and its derivatives are prominent examples of AIE-active materials, owing to [...] Read more.
Aggregation-induced emission (AIE) luminogens are materials that exhibit enhanced light emission in the aggregated state, primarily due to the restriction of intramolecular motions, which reduces energy loss through non-radiative pathways. Tetraphenylethylene (TPE) and its derivatives are prominent examples of AIE-active materials, owing to their ease of synthesis, tuneable photophysical properties, and strong aggregation tendencies. This review provides an overview of the fundamental AIE mechanisms in TPE-based systems, with a focus on the role of restricted intramolecular rotation (RIR) and π-twisting in governing their emission behaviour. It explores the influence of molecular structure, electronic configuration, and intermolecular interactions on fluorescence properties. Furthermore, recent advances in practical applications of TPE-based AIE luminogens are highlighted across a spectrum of biological imaging domains, including cellular imaging, tissue and in vivo imaging, and organelle-targeted imaging. Additionally, their integration into multifunctional and theranostic platforms, along with the development of stimuli-responsive and self-assembled systems, underscores their versatility and expanding potential in biomedical research and diagnostics. This review aims to offer valuable insights into the design principles and functional potential of TPE-based AIE luminogens, guiding the development of next-generation materials for advanced bioimaging technologies. Full article
(This article belongs to the Special Issue Photochemistry Directed Applications of Organic Fluorescent Materials)
Show Figures

Figure 1

12 pages, 2131 KB  
Article
Harnessing Excited-State Iminium Form in 1,5-Diaminonaphthalene for Rapid Water Detection in Organic Solvents
by Erika Kopcsik, Péter Kun and Miklós Nagy
Photochem 2025, 5(3), 22; https://doi.org/10.3390/photochem5030022 - 15 Aug 2025
Viewed by 310
Abstract
Accurate detection of water in organic solvents is essential for various industrial and analytical applications. In this study, we present a simple, rapid, and sensitive fluorescence-based method for water quantification using 1,5-diaminonaphthalene (1,5-DAN) as a solvatochromic probe. This method exploits the excited-state intramolecular [...] Read more.
Accurate detection of water in organic solvents is essential for various industrial and analytical applications. In this study, we present a simple, rapid, and sensitive fluorescence-based method for water quantification using 1,5-diaminonaphthalene (1,5-DAN) as a solvatochromic probe. This method exploits the excited-state intramolecular charge transfer (ICT) behavior of 1,5-DAN, which undergoes a symmetry-breaking transition in the presence of protic solvents such as water, leading to a distinct redshift in its emission spectrum and a change from a structured double-band to a single ICT band. We demonstrate that, in solvents like acetonitrile and tetrahydrofuran, the emission maxima of 1,5-DAN correlate linearly with water content up to 100%, while ratiometric analysis of peak intensities allows for sensitive detection in low concentration ranges. This method achieved limits of detection as low as 0.08% (v/v) in MeCN, with high reproducibility and minimal sample preparation. Application to a real MeCN–water azeotrope confirms the method’s accuracy, matching classical refractometric measurements. Our findings highlight the potential of 1,5-DAN as a low-cost, efficient, and non-destructive fluorescent sensor for monitoring moisture in organic solvents, offering a practical alternative to conventional methods such as Karl Fischer titration for both bulk and trace water analysis. Full article
Show Figures

Figure 1

1 pages, 127 KB  
Retraction
RETRACTED: Mau et al. Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem 2021, 1, 167–189
by Alexandre Mau, Guillaume Noirbent, Céline Dietlin, Bernadette Graff, Didier Gigmes, Frédéric Dumur and Jacques Lalevée
Photochem 2025, 5(3), 21; https://doi.org/10.3390/photochem5030021 - 14 Aug 2025
Viewed by 198
Abstract
The journal retracts the article entitled “Panchromatic Copper Complexes for Visible Light Photopolymerization” [...] Full article
25 pages, 7320 KB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 511
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

19 pages, 1683 KB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Viewed by 661
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

11 pages, 6478 KB  
Article
Observation of Blue Particles Formed by Photosensitizing Reaction on Paper Fibres of Cyanotypes
by Sawako Sentoku, Mari Kurashina and Keiko Kida
Photochem 2025, 5(3), 18; https://doi.org/10.3390/photochem5030018 - 23 Jul 2025
Viewed by 337
Abstract
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically [...] Read more.
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically with the application of water. The manner in which Prussian blue is fixed onto the paper substrate is important for determining the treatment method. This study is the first step toward clarifying this mechanism. The presence of Prussian blue in cyanotypes was first confirmed using X-ray diffraction analysis (XRD). Then, the location of Prussian blue in the fibre was confirmed using optical microscopy and micro-Raman spectroscopy analysis, by observing the blue colour and by detecting its cyanide bond. With field-emission scanning electron microscopy (FE-SEM), particles approximately 20–100 nm in size were observed on the surface of cyanotype paper fibres, and particles approximately 20–50 nm in size were observed from the cross-section of the paper fibres. The location where the particles were observed agreed with the location where the blue colour was observed and cyanide bond was detected. The fact that the sensitiser solution soaked into the paper fibres and formed Prussian blue within the paper fibres when exposed to light is thought to be important for the blue fixation of cyanotypes. Full article
Show Figures

Figure 1

32 pages, 2931 KB  
Review
Phototoxicity of Quinolones and Fluoroquinolones: A Mechanistic Review About Photophysical and Photochemical Pathways
by Elisa Leyva, Silvia E. Loredo-Carrillo, Irving R. Rodríguez-Gutiérrez, Denisse de Loera, Gabriela Navarro-Tovar and Lluvia I. López
Photochem 2025, 5(3), 17; https://doi.org/10.3390/photochem5030017 - 1 Jul 2025
Viewed by 817
Abstract
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of [...] Read more.
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of resistant bacterial strains. On the other side, some of these heterocyclic compounds have shown several adverse effects such as photocarcinogenic cutaneous reactions, with the development of skin tumors. These adverse properties have motivated a large number of studies on the photophysical, photochemical and phototoxic properties of these compounds. In this review, several important chemical aspects about quinolones and fluoroquinolones are discussed. In the first sections, their basic structure is presented, along with some important physicochemical properties. In the next sections, their photochemical and photophysical processes are discussed. Upon photolysis in aqueous neutral conditions, these heterocyclic compounds generate several highly reactive intermediates that could initiate diverse reactions with molecules. In a biological environment, quinolones and fluoroquinolones are known to associate with biomolecules and generate complexes. Within these complexes, photophysical and photochemical processes generate intermediates, accelerating diverse reactions between biomolecules and these heterocyclic compounds. For several decades, diverse fluoroquinolones have been prepared for the treatment of a variety of bacterial infections. However, their prescription has been restricted due to the associated severe side effects. In the last decade, new derivatives have been developed and are already in use. Their introduction into actual practice extends the number of antibiotics and provides new options for difficult-to-treat infections. Thus, for new pharmaceutical compounds to be used in medicinal practice, it is important to investigate their biological activity, as well as other biological properties and adverse effects, such as phototoxicity. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Scheme 1

Previous Issue
Back to TopTop