Mechanism-Guided Materials and Structural Design for High-Performance Nanogenerators
Conflicts of Interest
References
- Fatti, G.; Ko, H.; Cho, S.B. First-Principle Insights into Positive Triboelectrification of Polyoxymethylene Through Homolytic Bond Rupture. Nanoenergy Adv. 2025, 5, 1. [Google Scholar] [CrossRef]
- Pan, Z.; Yuan, S.; Zhang, Y.; Ren, X.; He, Z.; Wang, Z.; Han, S.; Qi, Y.; Yu, H.; Liu, J. Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures. Nanoenergy Adv. 2024, 4, 284–299. [Google Scholar] [CrossRef]
- Kisomi, M.K.; Roomi, M.S.; Mahmud, M.A.P. Mode-Adaptive Surface Pattern Design for Enhanced Triboelectric Nanogenerator Performance. Nanoenergy Adv. 2024, 4, 328–343. [Google Scholar] [CrossRef]
- Candido, I.C.M.; Freire, A.L.; Costa, C.A.R.; Oliveira, H.P.d. Doped-Cellulose Acetate Membranes as Friction Layers for Triboelectric Nanogenerators: The Influence of Roughness Degree and Surface Potential on Electrical Performance. Nanoenergy Adv. 2024, 4, 196–208. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.; Zhang, Y. Multi-Charge Storage Layer Model of High-Charge-Density Triboelectric Nanogenerator. Nanoenergy Adv. 2023, 3, 247–258. [Google Scholar] [CrossRef]
- Fang, D.; Gu, G.; Zhang, W.; Gu, G.; Wang, C.; Zhang, B.; Cheng, G.; Du, Z. A Double-Electrode-Layer Wind-Driven Triboelectric Nanogenerator with Low Frictional Resistance and High Mechanical Energy Conversion Efficiency of 10.3%. Nanoenergy Adv. 2023, 3, 236–246. [Google Scholar] [CrossRef]
- Xue, M.; Li, F.; Peng, W.; Zhu, Q.; He, Y. Pyro-Phototronic Effect Enhanced MXene/ZnO Heterojunction Nanogenerator for Light Energy Harvesting. Nanoenergy Adv. 2023, 3, 401–420. [Google Scholar] [CrossRef]
- Bui, Q.C.; Consonni, V.; Jiménez, C.; Roussel, H.; Mescot, X.; Salem, B.; Ardila, G. Correlation between the Dimensions and Piezoelectric Properties of ZnO Nanowires Grown by PLI-MOCVD with Different Flow Rates. Nanoenergy Adv. 2023, 3, 220–235. [Google Scholar] [CrossRef]
- Song, Z.; Cai, X.; Chen, Z.; Zhu, Z.; Cao, Y.; Li, W. Ultrathin, Stretchable, and Twistable Ferroelectret Nanogenerator for Facial Muscle Detection. Nanoenergy Adv. 2024, 4, 344–354. [Google Scholar] [CrossRef]
- Ding, Q.; Rasheed, A.; Zhang, H.; Ajmal, S.; Dastgeer, G.; Saidov, K.; Ruzimuradov, O.; Mamatkulov, S.; He, W.; Wang, P. A Coaxial Triboelectric Fiber Sensor for Human Motion Recognition and Rehabilitation via Machine Learning. Nanoenergy Adv. 2024, 4, 355–366. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y. Mechanism-Guided Materials and Structural Design for High-Performance Nanogenerators. Nanoenergy Adv. 2025, 5, 21. https://doi.org/10.3390/nanoenergyadv5040021
Yang Y. Mechanism-Guided Materials and Structural Design for High-Performance Nanogenerators. Nanoenergy Advances. 2025; 5(4):21. https://doi.org/10.3390/nanoenergyadv5040021
Chicago/Turabian StyleYang, Ya. 2025. "Mechanism-Guided Materials and Structural Design for High-Performance Nanogenerators" Nanoenergy Advances 5, no. 4: 21. https://doi.org/10.3390/nanoenergyadv5040021
APA StyleYang, Y. (2025). Mechanism-Guided Materials and Structural Design for High-Performance Nanogenerators. Nanoenergy Advances, 5(4), 21. https://doi.org/10.3390/nanoenergyadv5040021
