Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers
Abstract
1. Introduction
2. Methods and Materials for Producing Intrinsic Optical Bi-Stability (IOB)
2.1. Collections of Spatially Distributed, Dense, Two-Level Atoms for Producing Intrinsic Optical Bi-Stability (IOB)
2.2. Equations of Motion for Intrinsic Bi-Stability Including Noise Terms
3. Results for Optical Intrinsic Bi-Stability in Excited Atomic Dimers, with Ion Pairs and Up-Conversion with Intermediate Virtual Level

4. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowden, C.M.; Sung, C.C. First-and second-order phase transitions in the Dicke model: Relation to bi stability. Phys. Rev. A 1979, 19, 2392–2401. [Google Scholar] [CrossRef]
- Hopf, F.A.; Bowden, C.M.; Louisell, W.H. Mirrorless optical bi stability with the use of the local field correction. Phys. Rev. A 1984, 29, 2591–2596. [Google Scholar] [CrossRef]
- Hopf, F.A.; Bowden, C.M. Heuristic stochastic model of mirrorless optical bi stability. Phys. Rev. A 1985, 32, 268–275. [Google Scholar]
- Ben-Aryeh, Y.; Bowden, C.M.; England, J.C. Intrinsic optical bi stability in collection of spatially distributed two-level atoms. Phys. Rev. A 1986, 34, 3917–3926. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y.; Bowden, C.M.; Englund, J.C. Longitudinal special first-order phase transition in a system of coherently driven, two-level atoms. Opt. Comm. 1987, 61, 147–150. [Google Scholar]
- Bowden, C.M.; Dowling, J.P. Near-dipole-dipole effects in dense media: Generalized Maxwell-Bloch equations. Phys. Rev. A 1993, 47, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, M.E.; Bowden, C.M. Local-field effects in a dense collection of two-level atoms embedded in a dielectric medium: Intrinsic optical bi-stability enhancement and local cooperative effects. Phys. Rev. A 1996, 53, 1139–1142. [Google Scholar] [PubMed]
- Goldstone, J.A.; Garmire, E. Intrinsic optical bi stability in nonlinear media. Phys. Rev. Lett. 1984, 53, 910–912. [Google Scholar]
- Benedict, M.G.; Malysshev, V.A.; Trifonov, E.D.; Zaitsev, A.I. Reflection and transmission of ultrashort light pulses through a thin resonant medium: Local field effects. Phys. Rev. A 1991, 43, 3845–3853. [Google Scholar] [CrossRef]
- Malikov, R.F.; Malyshev, V.A. Optical bi stability and hysteresis of a thin layer of resonant emitters: Interplay of in homogenous broadening of the absorption line and the Lorentz local field. Opt. Spectrosc. 2017, 122, 955–963. [Google Scholar]
- Yoon, Y.-K.; Bennink, R.S.; Boyd, R.W.; Sipe, J.E. Intrinsic optical bi stability in a thin layer of nonlinear optical material by means of local field effects. Opt. Comm. 2000, 179, 577–580. [Google Scholar]
- Gibbs, H.M. Optical Bistability. In Controlling Light with Light; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Bowden, C.M.; Ciftan, M.; Robl, R. Optical Bi Stability; Plenum: New York, NY, USA, 2012. [Google Scholar]
- Joshi, A.; Xiao, M. Controlling Steady-State and Dynamical Properties of Atomic Bi Stability; World Scientific: Singapore, 2012. [Google Scholar]
- Lugiato, L.A., II. Theory of optical bi stability. Prog. Opt. 1984, 21, 69–216. [Google Scholar]
- Hehlen, M.P.; Gudel, H.U.; Shou, Q.; Rai, J.; Rai, S.; Rand, S.C. Cooperative bi stability in dense, excited atomic systems. Phys. Rev. Lett. 1994, 73, 1103–1106. [Google Scholar] [PubMed]
- Hehlen, M.P.; Gudel, H.U.; Shou, Q.; Rand, S.C. Cooperative optical bi stability in the system CS3Y2Br9:10%Yb3+. J. Chem. Phys. 1996, 104, 1232–1244. [Google Scholar]
- Luthi, S.R.; Hehlen, M.P.; Riedener, T.; Gudel, H.U. Excited-state dynamics and optical bi stability in the dimer system Cs3Lu2Br9:Yb3+. J. Lumin. 1998, 76–77, 447–454. [Google Scholar]
- Hehlen, M.P.; Kuditcher, A.; Rand, S.C.; Luthi, S.R. Site-selective, intrinsically bi stable luminescence of Yb3+ ions pairs in CsCdBr3. Phys. Rev. Lett. 1999, 82, 3050–3053. [Google Scholar]
- Hehlen, M.P.; Guedel, H.U. Optical Spectroscopy of the Dimer System Cs3Yb2Br9. ChemInform 1993, 98, 1768–1799. [Google Scholar] [CrossRef]
- Kuditcher, A.; Hehlen, M.P.; Florea, C.M.; Winick, K.W.; Rand, S.C. Intrinsic bi stability of luminescence and stimulated emission in Yb- and Tm-doped glass. Phys. Rev. Lett. 2000, 84, 1898–1901. [Google Scholar]
- Chen, Y.-H.; Horwath, S.P.; Longdell, J.J.; Zahng, X. Optically unstable phase from ion-ion interactions in an erbium doped crystal. Phys. Rev. Lett. 1994, 196, 371–376. [Google Scholar] [CrossRef]
- Guillot-Noel, O.; Binet, L.; Gourier, D. Towards intrinsic optical bi stability of rare earth ion pairs in solids. Chem. Physic Lett. 2001, 344, 612–618. [Google Scholar]
- Yudson, V.I.; Reineker, P. Excitons effects in dense media: Breakdown of intrinsic optical bi stability. Phys. Lett. A 1995, 196, 371–376. [Google Scholar] [CrossRef]
- Milonni, P.W.; Knight, P.L. Retardation in the resonant interaction of two identical atoms. Phys. Rev. A 1974, 10, 1096. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y.; Bowden, C.M. Mirrorless optical bi stability in a spatially distributed collection of two-level systems. Opt. Commun. 1986, 59, 224–228. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y.; Bowden, C.M. Quantum noise effects in intrinsic optical bi stability of a system of interacting two-level atoms. Opt. Commun. 1989, 72, 335–340. [Google Scholar] [CrossRef]
- Song, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Goldner, P.; Pelle, F.; Meichenin, D.; Auzel, F. Cooperative luminescence in erbium-doped CsCDBr3. J. Lumin. 1997, 71, 137–150. [Google Scholar] [CrossRef]
- Vacchini, V.; Breuer, H.-P. Exact non-Markovian decay of a qubit. Phys. Rev. A 2010, 81, 042103. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Olden, N.E.; Coplen, T. The Periodic Table of the Elements. Chem. Int. 2004, 26, 8–9. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Yan, L.; Gao, Z.; Yang, S.; Su, Z.; Chen, W.; Li, Y.; Wang, F. Adverse effects and underlying mechanism of rare earth elements. Environ. Health 2025, 24, 31. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ben-Aryeh, Y. Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers. Solids 2026, 7, 2. https://doi.org/10.3390/solids7010002
Ben-Aryeh Y. Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers. Solids. 2026; 7(1):2. https://doi.org/10.3390/solids7010002
Chicago/Turabian StyleBen-Aryeh, Yacob. 2026. "Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers" Solids 7, no. 1: 2. https://doi.org/10.3390/solids7010002
APA StyleBen-Aryeh, Y. (2026). Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers. Solids, 7(1), 2. https://doi.org/10.3390/solids7010002

