Outliers Impact on Parameter Estimation of Gaussian and Non-Gaussian State Space Models: A Simulation Study †
Abstract
:1. Introduction
2. Simulation Design
- is the observed data;
- is a factor, assumed to be known, that relates the observation to the state at time t;
- , , , and ;
- , , , and ;
- , , , and ;
- , .
- The first is based on the linear Gaussian state space model given by
- The second is based on the linear Gaussian state space model with contaminated observations.
- The third is based on the linear non-Gaussian state space model with exponential errors defined by
- The last one is based on the linear non-Gaussian state space model with exponential errors and contaminated observations. Similar to scenario 2, we havewhere , and k given in (5).
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and its Applications: With R Examples; Springer: New York, NY, USA, 2017. [Google Scholar]
- Petris, G.; Petrone, S.; Campagnoli, P. Dynamic Linear Models with R; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Durbin, J.; Koopman, S. Time Series Analysis by State Space Methods; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Kalman, R. A New Approach to Linear Filtering and Prediction Problems. ASME J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Alpuim, T. Parameter estimation of state space models for univariate observations. J. Stat. Plan. Inference 2010, 140, 1889–1902. [Google Scholar] [CrossRef]
- Costa, M.; Monteiro, M. Bias-correction of kalman filter estimators associated to a linear state space model with estimated parameters. J. Stat. Plan. Inference 2016, 176, 22–32. [Google Scholar] [CrossRef] [Green Version]
- You, D.; Hunter, M.; Chen, M.; Chow, S.M. A diagnostic procedure for detecting outliers in linear state-space models. Multivar. Behav. Res. 2020, 55, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Cipra, T.; Romera, R. Kalman filter with outliers and missing observations. Test 1997, 6, 379–395. [Google Scholar] [CrossRef]
- Auger-Méthé, M.; Field, C.; Albertsen, C.M.; Derocher, A.E.; Lewis, M.A.; Jonsen, I.D.; Flemming, J.M. State-space models’ dirty little secrets: Even simple linear Gaussian models can have estimation problems. Sci. Rep. 2016, 6, 26677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandolfo, G.; Iorio, C.; Siciliano, R.; D’Ambrosio, A. Robust mean-variance portfolio through the weighted Lp depth function. In Annals of Operations Research; Springer: Berlin/Heidelberg, Germany, 2020; Volume 292, pp. 519–531. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series: A Data Analysis Approach Using R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Crevits, R.; Croux, C. Robust estimation of linear state space models. Commun. Stat.-Simul. Comput. 2019, 48, 1694–1705. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Tahir, M. Maximum likelihood-based robust state estimation over a horizon length during measurement outliers. Trans. Inst. Meas. Control 2021, 43, 510–518. [Google Scholar] [CrossRef]
| Parameters | RMSE | MAE | MAPE (%) | Convergence Rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.2542 | 0.0563 | 0.0502 | 0.1894 | 0.0484 | 0.0452 | 75.7423 | 48.3383 | 90.4927 | |
| C | 0.3823 | 0.3325 | 0.3095 | 0.2983 | 0.2375 | 0.2052 | 119.3057 | 237.5420 | 410.4236 | ||||
| 1.00 | 0.10 | NC | 0.2598 | 0.4638 | 0.3699 | 0.1934 | 0.3634 | 0.2632 | 77.3528 | 36.3408 | 263.1570 | ||
| C | 0.3514 | 1.3520 | 1.2319 | 0.2717 | 1.0957 | 0.7552 | 108.6993 | 109.5651 | 755.1521 | ||||
| 5.00 | 2.00 | NC | 0.2880 | 2.7078 | 2.2864 | 0.2184 | 2.2837 | 1.9787 | 87.3520 | 45.6746 | 98.9341 | ||
| C | 0.3820 | 6.3580 | 5.6467 | 0.2994 | 5.1446 | 4.1499 | 119.7610 | 102.8927 | 207.4966 | ||||
| 0.10 | 1.00 | NC | 0.3320 | 0.6580 | 0.6630 | 0.2634 | 0.4794 | 0.5380 | 105.3703 | 479.3548 | 53.7974 | ||
| C | 0.4851 | 1.5345 | 1.1760 | 0.3916 | 1.0672 | 0.9876 | 156.6558 | 1067.1860 | 98.7612 | ||||
| 2.00 | 5.00 | NC | 0.3097 | 3.3616 | 3.3738 | 0.2404 | 2.6656 | 2.7813 | 96.1717 | 133.2785 | 55.6251 | ||
| C | 0.4735 | 6.8657 | 5.6124 | 0.3706 | 4.8976 | 4.7397 | 148.2420 | 244.8814 | 94.7940 | ||||
| 0.05 | 0.10 | NC | 0.2672 | 0.0750 | 0.0727 | 0.2077 | 0.0621 | 0.0620 | 83.0659 | 124.1018 | 62.0471 | ||
| C | 0.4473 | 0.3198 | 0.3676 | 0.3585 | 0.2216 | 0.2602 | 143.4173 | 443.1005 | 260.2065 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.1595 | 0.0503 | 0.0367 | 0.1228 | 0.0413 | 0.0309 | 16.3687 | 41.2797 | 61.7597 | |
| C | 0.4356 | 0.3444 | 0.5165 | 0.3019 | 0.1916 | 0.3533 | 40.2592 | 191.5928 | 706.5637 | ||||
| 1.00 | 0.10 | NC | 0.1190 | 0.3430 | 0.1885 | 0.0917 | 0.2728 | 0.1408 | 12.2261 | 27.2783 | 140.7727 | ||
| C | 0.3056 | 1.3890 | 2.3812 | 0.2071 | 0.9184 | 1.7949 | 27.6161 | 91.8402 | 1794.8840 | ||||
| 5.00 | 2.00 | NC | 0.1364 | 2.2249 | 1.5857 | 0.1062 | 1.8382 | 1.3111 | 14.1653 | 36.7633 | 65.5527 | ||
| C | 0.2899 | 6.8220 | 10.8105 | 0.1897 | 4.5106 | 8.5797 | 25.2983 | 90.2117 | 428.9829 | ||||
| 0.10 | 1.00 | NC | 0.3152 | 0.4849 | 0.4972 | 0.2410 | 0.3009 | 0.3666 | 32.1341 | 300.8559 | 36.6612 | ||
| C | 0.5611 | 1.4225 | 1.4693 | 0.3981 | 0.8159 | 1.2037 | 53.0740 | 815.9315 | 120.3714 | ||||
| 2.00 | 5.00 | NC | 0.2362 | 2.6149 | 2.4755 | 0.1784 | 1.8878 | 1.9114 | 23.7931 | 94.3914 | 38.2272 | ||
| C | 0.4479 | 6.7006 | 7.5337 | 0.3085 | 4.2198 | 6.1402 | 41.1287 | 210.9902 | 122.8036 | ||||
| 0.05 | 0.10 | NC | 0.2296 | 0.0582 | 0.0526 | 0.1743 | 0.0429 | 0.0414 | 23.2456 | 85.7212 | 41.3812 | ||
| C | 0.5148 | 0.3089 | 0.4349 | 0.3731 | 0.1787 | 0.3175 | 49.7412 | 357.4894 | 317.4564 | ||||
| Parameters | RMSE | MAE | MAPE (%) | Convergence Rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.2125 | 0.0533 | 0.0486 | 0.1552 | 0.0481 | 0.0445 | 62.0843 | 48.0637 | 89.0227 | |
| C | 0.4414 | 0.2937 | 0.3973 | 0.3511 | 0.2170 | 0.3170 | 140.4550 | 216.9786 | 634.0003 | ||||
| 1.00 | 0.10 | NC | 0.1827 | 0.3872 | 0.3342 | 0.1263 | 0.2890 | 0.2466 | 50.5172 | 28.8980 | 246.6108 | ||
| C | 0.3302 | 1.2494 | 1.3655 | 0.2531 | 1.1183 | 0.8983 | 101.2448 | 111.8291 | 898.3335 | ||||
| 5.00 | 2.00 | NC | 0.2257 | 2.4857 | 2.2298 | 0.1647 | 2.1584 | 1.9656 | 65.8709 | 43.1676 | 98.2816 | ||
| C | 0.3210 | 6.0353 | 5.7585 | 0.2525 | 5.2843 | 4.1940 | 101.0001 | 105.6860 | 209.6988 | ||||
| 0.10 | 1.00 | NC | 0.3294 | 0.5910 | 0.5952 | 0.2693 | 0.4203 | 0.4418 | 107.7206 | 420.3230 | 44.1772 | ||
| C | 0.5079 | 1.1490 | 1.2565 | 0.4159 | 0.7094 | 1.1202 | 166.3406 | 709.3999 | 112.0214 | ||||
| 2.00 | 5.00 | NC | 0.2942 | 3.1051 | 3.0346 | 0.2352 | 2.4888 | 2.4204 | 94.0959 | 124.4377 | 48.4077 | ||
| C | 0.4888 | 5.2005 | 5.9769 | 0.3932 | 3.6031 | 5.3909 | 157.2640 | 180.1539 | 107.8174 | ||||
| 0.05 | 0.10 | NC | 0.2512 | 0.0690 | 0.0672 | 0.1992 | 0.0574 | 0.0555 | 79.6690 | 114.7299 | 55.4981 | ||
| C | 0.4992 | 0.2898 | 0.3841 | 0.4026 | 0.1951 | 0.3182 | 161.0268 | 390.1951 | 318.2143 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.0791 | 0.0306 | 0.0223 | 0.0613 | 0.0243 | 0.0177 | 8.1741 | 24.2574 | 35.4005 | |
| C | 0.3249 | 0.1774 | 0.6307 | 0.1998 | 0.1042 | 0.5622 | 26.6395 | 104.1552 | 1124.3160 | ||||
| 1.00 | 0.10 | NC | 0.0557 | 0.1838 | 0.1057 | 0.0442 | 0.1468 | 0.0859 | 5.8966 | 14.6823 | 85.8500 | ||
| C | 0.2726 | 0.7185 | 2.5998 | 0.1459 | 0.5113 | 2.3158 | 19.4529 | 51.1345 | 2315.7740 | ||||
| 5.00 | 2.00 | NC | 0.0763 | 1.4259 | 0.9946 | 0.0596 | 1.1414 | 0.7971 | 7.9484 | 22.8271 | 39.8563 | ||
| C | 0.1241 | 3.4324 | 10.9591 | 0.0944 | 2.3950 | 10.0756 | 12.5843 | 47.8992 | 503.7812 | ||||
| 0.10 | 1.00 | NC | 0.2457 | 0.3409 | 0.3348 | 0.1779 | 0.1836 | 0.2116 | 23.7169 | 183.5833 | 21.1571 | ||
| C | 0.4690 | 0.8662 | 1.5181 | 0.3137 | 0.4036 | 1.3994 | 41.8257 | 403.6151 | 139.9393 | ||||
| 2.00 | 5.00 | NC | 0.1293 | 1.4609 | 1.3363 | 0.0943 | 1.0084 | 0.9691 | 12.5672 | 50.4175 | 19.3819 | ||
| C | 0.3233 | 3.2270 | 7.9895 | 0.1826 | 1.8840 | 7.3360 | 24.3493 | 94.1989 | 146.7208 | ||||
| 0.05 | 0.10 | NC | 0.1246 | 0.0326 | 0.0291 | 0.0927 | 0.0232 | 0.0216 | 12.3547 | 46.3956 | 21.6304 | ||
| C | 0.3633 | 0.2014 | 0.4895 | 0.2410 | 0.1021 | 0.4373 | 32.1288 | 204.1943 | 437.3301 | ||||
| Parameters | RMSE | MAE | MAPE (%) | Convergence Rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.1670 | 0.0487 | 0.0451 | 0.1246 | 0.0440 | 0.0410 | 49.8262 | 43.9675 | 81.9983 | |
| C | 0.5099 | 0.2843 | 0.4946 | 0.4266 | 0.2027 | 0.4261 | 170.6503 | 202.6937 | 852.1144 | ||||
| 1.00 | 0.10 | NC | 0.1322 | 0.3212 | 0.2834 | 0.0926 | 0.2411 | 0.2142 | 37.0469 | 24.1096 | 214.2324 | ||
| C | 0.3757 | 1.0511 | 1.6760 | 0.2954 | 0.9210 | 1.3679 | 118.1795 | 92.1025 | 1367.9340 | ||||
| 5.00 | 2.00 | NC | 0.1665 | 2.1973 | 2.0204 | 0.1219 | 1.9401 | 1.8018 | 48.7737 | 38.8022 | 90.0924 | ||
| C | 0.3571 | 5.2313 | 7.1197 | 0.2745 | 4.4927 | 6.0116 | 109.7836 | 89.8549 | 300.5794 | ||||
| 0.10 | 1.00 | NC | 0.3186 | 0.5157 | 0.5157 | 0.2655 | 0.3497 | 0.3555 | 106.1993 | 349.7172 | 35.5477 | ||
| C | 0.5660 | 1.0072 | 1.2870 | 0.4735 | 0.5918 | 1.1856 | 189.3834 | 591.7733 | 118.5649 | ||||
| 2.00 | 5.00 | NC | 0.2596 | 2.7002 | 2.6426 | 0.2080 | 2.1282 | 2.0529 | 83.2062 | 106.4111 | 41.0575 | ||
| C | 0.4327 | 4.9215 | 5.7057 | 0.3449 | 3.4861 | 5.2227 | 137.9698 | 174.3029 | 104.4536 | ||||
| 0.05 | 0.10 | NC | 0.2375 | 0.0645 | 0.0628 | 0.1900 | 0.0528 | 0.0510 | 75.9833 | 105.5881 | 50.9948 | ||
| C | 0.5787 | 0.2691 | 0.4908 | 0.5039 | 0.1635 | 0.4430 | 201.5559 | 326.9245 | 443.0177 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.0477 | 0.0195 | 0.0142 | 0.0373 | 0.0154 | 0.0114 | 4.9771 | 15.3516 | 22.7729 | |
| C | 0.1696 | 0.0817 | 0.6618 | 0.1106 | 0.0549 | 0.6455 | 14.7532 | 54.8753 | 1291.0500 | ||||
| 1.00 | 0.10 | NC | 0.0395 | 0.1343 | 0.0782 | 0.0318 | 0.1081 | 0.0647 | 4.2341 | 10.8147 | 64.6665 | ||
| C | 0.0732 | 0.3663 | 2.5760 | 0.0587 | 0.2834 | 2.5003 | 7.8213 | 28.3405 | 2500.3230 | ||||
| 5.00 | 2.00 | NC | 0.0474 | 0.9427 | 0.6600 | 0.0371 | 0.7485 | 0.5228 | 4.9477 | 14.9700 | 26.1379 | ||
| C | 0.0744 | 1.9273 | 10.4652 | 0.0578 | 1.4293 | 10.1291 | 7.7126 | 28.5863 | 506.4527 | ||||
| 0.10 | 1.00 | NC | 0.1732 | 0.2068 | 0.2027 | 0.1219 | 0.1011 | 0.1174 | 16.2546 | 101.1061 | 11.7441 | ||
| C | 0.2439 | 0.5109 | 1.5706 | 0.2001 | 0.2151 | 1.5087 | 26.6834 | 215.1086 | 150.8725 | ||||
| 2.00 | 5.00 | NC | 0.0723 | 0.7514 | 0.7300 | 0.0554 | 0.5623 | 0.5663 | 7.3812 | 28.1170 | 11.3252 | ||
| C | 0.1162 | 1.6095 | 7.9601 | 0.0903 | 1.0526 | 7.6541 | 12.0342 | 52.6321 | 153.0817 | ||||
| 0.05 | 0.10 | NC | 0.0689 | 0.0175 | 0.0159 | 0.0528 | 0.0131 | 0.0122 | 7.0341 | 26.2519 | 12.2090 | ||
| C | 0.1914 | 0.1201 | 0.5832 | 0.1534 | 0.0547 | 0.5635 | 20.4470 | 109.4875 | 563.4770 | ||||
| Parameters | RMSE | MAE | MAPE (%) | Convergence rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.2403 | 0.0621 | 0.0520 | 0.1799 | 0.0504 | 0.0457 | 71.9672 | 50.3763 | 91.4927 | |
| C | 0.3995 | 0.3399 | 0.3274 | 0.3134 | 0.2428 | 0.2110 | 125.3731 | 242.7797 | 422.0013 | ||||
| 1.00 | 0.10 | NC | 0.2591 | 0.5315 | 0.3983 | 0.1934 | 0.4320 | 0.2635 | 77.3567 | 43.2020 | 263.5235 | ||
| C | 0.3516 | 1.3525 | 1.3138 | 0.2744 | 1.0954 | 0.7735 | 109.7515 | 109.5363 | 773.5130 | ||||
| 5.00 | 2.00 | NC | 0.2810 | 3.0601 | 2.4320 | 0.2140 | 2.4909 | 1.9947 | 85.6126 | 49.8187 | 99.7367 | ||
| C | 0.3788 | 6.3086 | 5.6419 | 0.2971 | 5.0720 | 4.0209 | 118.8333 | 101.4390 | 201.0444 | ||||
| 0.10 | 1.00 | NC | 0.3352 | 0.7070 | 0.7121 | 0.2656 | 0.4958 | 0.6145 | 106.2327 | 495.7865 | 61.4506 | ||
| C | 0.4979 | 1.4952 | 1.2090 | 0.4045 | 1.0352 | 1.0202 | 161.7847 | 1035.2270 | 102.0164 | ||||
| 2.00 | 5.00 | NC | 0.3036 | 3.5020 | 3.6159 | 0.2359 | 2.7018 | 3.0956 | 94.3541 | 135.0912 | 61.9127 | ||
| C | 0.4756 | 7.4254 | 5.7965 | 0.3764 | 5.2303 | 4.8901 | 150.5748 | 261.5164 | 97.8024 | ||||
| 0.05 | 0.10 | NC | 0.2712 | 0.0818 | 0.0775 | 0.2089 | 0.0644 | 0.0676 | 83.5522 | 128.8785 | 67.6088 | ||
| C | 0.4505 | 0.3498 | 0.3421 | 0.3573 | 0.2485 | 0.2372 | 142.9146 | 496.9232 | 237.1900 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.1611 | 0.0564 | 0.0398 | 0.1246 | 0.0450 | 0.0322 | 16.6099 | 45.0059 | 64.3029 | |
| C | 0.4359 | 0.3223 | 0.5405 | 0.3033 | 0.1875 | 0.3750 | 40.4453 | 187.5322 | 750.0313 | ||||
| 1.00 | 0.10 | NC | 0.1175 | 0.4488 | 0.1929 | 0.0925 | 0.3574 | 0.1397 | 12.3275 | 35.7367 | 139.7342 | ||
| C | 0.3433 | 1.3662 | 2.5133 | 0.2284 | 0.9272 | 1.8790 | 30.4537 | 92.7218 | 1879.0050 | ||||
| 5.00 | 2.00 | NC | 0.1448 | 2.7020 | 1.7189 | 0.1120 | 2.1216 | 1.3609 | 14.9294 | 42.4323 | 68.0429 | ||
| C | 0.3000 | 6.8179 | 11.0149 | 0.1977 | 4.5487 | 8.6278 | 26.3555 | 90.9748 | 431.3905 | ||||
| 0.10 | 1.00 | NC | 0.3093 | 0.4945 | 0.5622 | 0.2368 | 0.3007 | 0.4524 | 31.5769 | 300.7228 | 45.2368 | ||
| C | 0.5765 | 1.3806 | 1.5393 | 0.4103 | 0.7817 | 1.2490 | 54.7124 | 781.7267 | 124.9006 | ||||
| 2.00 | 5.00 | NC | 0.2394 | 2.8641 | 2.9144 | 0.1801 | 1.9810 | 2.3408 | 24.0172 | 99.0487 | 46.8162 | ||
| C | 0.4688 | 6.9340 | 7.5328 | 0.3241 | 4.3006 | 6.0393 | 43.2112 | 215.0307 | 120.7854 | ||||
| 0.05 | 0.10 | NC | 0.2345 | 0.0614 | 0.0594 | 0.1767 | 0.0437 | 0.0484 | 23.5599 | 87.3926 | 48.3987 | ||
| C | 0.5399 | 0.3405 | 0.4259 | 0.4039 | 0.2083 | 0.3024 | 53.8548 | 416.5115 | 302.3952 | ||||
| Parameters | RMSE | MAE | MAPE (%) | Convergence Rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.2195 | 0.0567 | 0.0502 | 0.1605 | 0.0501 | 0.0458 | 64.1779 | 50.0747 | 91.6168 | |
| C | 0.4489 | 0.2919 | 0.4062 | 0.3589 | 0.2159 | 0.3230 | 143.5695 | 215.8788 | 645.9832 | ||||
| 1.00 | 0.10 | NC | 0.1942 | 0.4247 | 0.3510 | 0.1343 | 0.3304 | 0.2550 | 53.7222 | 33.0384 | 255.0102 | ||
| C | 0.3275 | 1.2229 | 1.3829 | 0.2520 | 1.0916 | 0.8967 | 100.8199 | 109.1563 | 896.7205 | ||||
| 5.00 | 2.00 | NC | 0.2352 | 2.6233 | 2.2958 | 0.1709 | 2.2450 | 2.0030 | 68.3418 | 44.8991 | 100.1478 | ||
| C | 0.3157 | 6.0485 | 5.8589 | 0.2491 | 5.2427 | 4.2303 | 99.6284 | 104.8537 | 211.5132 | ||||
| 0.10 | 1.00 | NC | 0.3263 | 0.6068 | 0.6071 | 0.2698 | 0.4264 | 0.4734 | 107.9090 | 426.4313 | 47.3421 | ||
| C | 0.5063 | 1.1797 | 1.2615 | 0.4136 | 0.7430 | 1.1099 | 165.4252 | 743.0232 | 110.9928 | ||||
| 2.00 | 5.00 | NC | 0.2871 | 3.0873 | 3.0756 | 0.2286 | 2.4294 | 2.4630 | 91.4476 | 121.4710 | 49.2608 | ||
| C | 0.4800 | 5.3433 | 5.8893 | 0.3878 | 3.7179 | 5.2539 | 155.1106 | 185.8963 | 105.0775 | ||||
| 0.05 | 0.10 | NC | 0.2547 | 0.0706 | 0.0689 | 0.2040 | 0.0582 | 0.0576 | 81.5998 | 116.3832 | 57.6243 | ||
| C | 0.4861 | 0.2824 | 0.3672 | 0.3959 | 0.1923 | 0.3042 | 158.3634 | 384.6917 | 304.2286 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.0796 | 0.0350 | 0.0233 | 0.0617 | 0.0274 | 0.0186 | 8.2315 | 27.4339 | 37.1357 | |
| C | 0.3272 | 0.2014 | 0.6101 | 0.1953 | 0.1114 | 0.5404 | 26.0350 | 111.3510 | 1080.8030 | ||||
| 1.00 | 0.10 | NC | 0.0597 | 0.2508 | 0.1085 | 0.0474 | 0.1994 | 0.0873 | 6.3241 | 19.9427 | 87.2755 | ||
| C | 0.2891 | 0.7251 | 2.6068 | 0.1467 | 0.5148 | 2.3368 | 19.5576 | 51.4762 | 2336.7630 | ||||
| 5.00 | 2.00 | NC | 0.0746 | 1.6329 | 1.0466 | 0.0594 | 1.3146 | 0.8439 | 7.9157 | 26.2910 | 42.1946 | ||
| C | 0.1272 | 3.6999 | 10.6605 | 0.0940 | 2.5298 | 9.7850 | 12.5288 | 50.5952 | 489.2506 | ||||
| 0.10 | 1.00 | NC | 0.2397 | 0.3397 | 0.3613 | 0.1728 | 0.1807 | 0.2566 | 23.0433 | 180.7138 | 25.6634 | ||
| C | 0.4477 | 0.8176 | 1.5542 | 0.3042 | 0.3849 | 1.4218 | 40.5591 | 384.9222 | 142.1828 | ||||
| 2.00 | 5.00 | NC | 0.1296 | 1.5155 | 1.5429 | 0.0951 | 1.0538 | 1.1744 | 12.6814 | 52.6910 | 23.4870 | ||
| C | 0.3411 | 3.2286 | 8.1396 | 0.1906 | 1.8699 | 7.4604 | 25.4199 | 93.4933 | 149.2072 | ||||
| 0.05 | 0.10 | NC | 0.1199 | 0.0326 | 0.0327 | 0.0888 | 0.0235 | 0.0253 | 11.8369 | 46.9942 | 25.2911 | ||
| C | 0.4057 | 0.1971 | 0.4953 | 0.2636 | 0.0980 | 0.4410 | 35.1415 | 196.0500 | 440.9552 | ||||
| Parameters | RMSE | MAE | MAPE (%) | Convergence Rate | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | |||||||||||||
| 0.25 | 0.10 | 0.05 | NC | 0.1774 | 0.0502 | 0.0459 | 0.1295 | 0.0449 | 0.0415 | 51.8133 | 44.9298 | 83.0451 | |
| C | 0.5105 | 0.2796 | 0.4923 | 0.4312 | 0.2000 | 0.4234 | 172.4715 | 200.0235 | 846.7976 | ||||
| 1.00 | 0.10 | NC | 0.1360 | 0.3393 | 0.2890 | 0.0925 | 0.2583 | 0.2157 | 37.0141 | 25.8315 | 215.7496 | ||
| C | 0.3751 | 1.0426 | 1.6910 | 0.2938 | 0.9117 | 1.3735 | 117.5078 | 91.1686 | 1373.5180 | ||||
| 5.00 | 2.00 | NC | 0.1704 | 2.2503 | 2.0470 | 0.1234 | 1.9625 | 1.8020 | 49.3534 | 39.2493 | 90.0986 | ||
| C | 0.3479 | 5.3039 | 7.0687 | 0.2679 | 4.5285 | 5.9227 | 107.1780 | 90.5707 | 296.1330 | ||||
| 0.10 | 1.00 | NC | 0.3131 | 0.5300 | 0.5411 | 0.2597 | 0.3703 | 0.3968 | 103.8980 | 370.3198 | 39.6789 | ||
| C | 0.5597 | 1.0212 | 1.2769 | 0.4684 | 0.6074 | 1.1618 | 187.3698 | 607.3962 | 116.1793 | ||||
| 2.00 | 5.00 | NC | 0.2601 | 2.7288 | 2.7233 | 0.2073 | 2.1620 | 2.1463 | 82.9108 | 108.0979 | 42.9251 | ||
| C | 0.4306 | 4.9082 | 5.7249 | 0.3452 | 3.5071 | 5.1919 | 138.0972 | 175.3540 | 103.8379 | ||||
| 0.05 | 0.10 | NC | 0.2376 | 0.0645 | 0.0627 | 0.1901 | 0.0524 | 0.0510 | 76.0432 | 104.7235 | 50.9923 | ||
| C | 0.5858 | 0.2454 | 0.4984 | 0.5118 | 0.1446 | 0.4560 | 204.7275 | 289.2989 | 456.0194 | ||||
| 0.75 | 0.10 | 0.05 | NC | 0.0475 | 0.0231 | 0.0155 | 0.0372 | 0.0181 | 0.0123 | 4.9720 | 18.1002 | 24.5343 | |
| C | 0.1591 | 0.0842 | 0.6609 | 0.1062 | 0.0545 | 0.6454 | 14.1550 | 54.5197 | 1290.8090 | ||||
| 1.00 | 0.10 | NC | 0.0384 | 0.1704 | 0.0773 | 0.0307 | 0.1373 | 0.0643 | 4.0941 | 13.7260 | 64.3178 | ||
| C | 0.0721 | 0.3674 | 2.5627 | 0.0581 | 0.2882 | 2.4862 | 7.7527 | 28.8233 | 2486.2120 | ||||
| 5.00 | 2.00 | NC | 0.0466 | 1.0946 | 0.6805 | 0.0370 | 0.8577 | 0.5377 | 4.9267 | 17.1536 | 26.8825 | ||
| C | 0.0724 | 1.9116 | 10.6844 | 0.0572 | 1.4456 | 10.3496 | 7.6297 | 28.9121 | 517.4798 | ||||
| 0.10 | 1.00 | NC | 0.1725 | 0.1945 | 0.2149 | 0.1211 | 0.0988 | 0.1473 | 16.1486 | 98.8105 | 14.7318 | ||
| C | 0.2492 | 0.5142 | 1.5627 | 0.1972 | 0.2080 | 1.4974 | 26.2946 | 208.0308 | 149.7398 | ||||
| 2.00 | 5.00 | NC | 0.0760 | 0.8252 | 0.9283 | 0.0576 | 0.6068 | 0.7308 | 7.6842 | 30.3421 | 14.6165 | ||
| C | 0.1204 | 1.7123 | 7.9869 | 0.0934 | 1.0745 | 7.6659 | 12.4592 | 53.7261 | 153.3177 | ||||
| 0.05 | 0.10 | NC | 0.0684 | 0.0185 | 0.0190 | 0.0524 | 0.0138 | 0.0149 | 6.9855 | 27.6962 | 14.9040 | ||
| C | 0.1908 | 0.1162 | 0.5854 | 0.1535 | 0.0531 | 0.5665 | 20.4642 | 106.2381 | 566.4536 | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, F.C.; Gonçalves, A.M.; Costa, M. Outliers Impact on Parameter Estimation of Gaussian and Non-Gaussian State Space Models: A Simulation Study. Eng. Proc. 2022, 18, 31. https://doi.org/10.3390/engproc2022018031
Pereira FC, Gonçalves AM, Costa M. Outliers Impact on Parameter Estimation of Gaussian and Non-Gaussian State Space Models: A Simulation Study. Engineering Proceedings. 2022; 18(1):31. https://doi.org/10.3390/engproc2022018031
Chicago/Turabian StylePereira, Fernanda Catarina, Arminda Manuela Gonçalves, and Marco Costa. 2022. "Outliers Impact on Parameter Estimation of Gaussian and Non-Gaussian State Space Models: A Simulation Study" Engineering Proceedings 18, no. 1: 31. https://doi.org/10.3390/engproc2022018031
APA StylePereira, F. C., Gonçalves, A. M., & Costa, M. (2022). Outliers Impact on Parameter Estimation of Gaussian and Non-Gaussian State Space Models: A Simulation Study. Engineering Proceedings, 18(1), 31. https://doi.org/10.3390/engproc2022018031
