On the Development of a Deep Learning-Based Surrogate Model for Fleet-Wide Probabilistic Modeling †
Abstract
1. Introduction
2. Methodology
3. Case Study Description
3.1. Critical Component
3.2. Population Variability Definition and Dataset Generation
3.3. CVAE Model Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
DURC Statement
Acknowledgments
Conflicts of Interest
References
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; SIAM: Philadelphia, PA, USA, 2013; Volume 12. [Google Scholar]
- Mclean, J.H.; Jones, M.R.; O’Connell, B.J.; Maguire, A.E.; Rogers, T.J. Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature. Struct. Health Monit. 2023, 22, 3623–3636. [Google Scholar] [CrossRef]
- Bull, L.A.; Gardner, P.A.; Gosliga, J.; Rogers, T.J.; Dervilis, N.; Cross, E.J.; Papatheou, E.; Maguire, A.E.; Campos, C.; Worden, K. Foundations of population-based SHM, Part I: Homogeneous populations and forms. Mech. Syst. Signal Process. 2021, 148, 107141. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Chen, Z.; Gao, Z.; Shu, X.; Zhang, K. A missing sensor measurement data reconstruction framework powered by multi-task Gaussian process regression for dam structural health monitoring systems. Measurement 2021, 186, 110085. [Google Scholar] [CrossRef]
- Vega, M.A.; Todd, M.D. A variational Bayesian neural network for structural health monitoring and cost-informed decision-making in miter gates. Struct. Health Monit. 2020, 21, 123–143. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Eng. Appl. Artif. Intell. 2024, 131, 107881. [Google Scholar] [CrossRef]
- Zhuang, Y.; Cheng, S.; Duraisamy, K. Spatially-aware diffusion models with cross-attention for global field reconstruction with sparse observations. Comput. Methods Appl. Mech. Eng. 2025, 435, 117623. [Google Scholar] [CrossRef]
- Białas, P.; Korcyl, P.; Stebel, T. Training normalizing flows with computationally intensive target probability distributions. Comput. Phys. Commun. 2024, 298, 109094. [Google Scholar] [CrossRef]
- Itoi, T.; Amishiki, K.; Lee, S.; Yaoyama, T. Bayesian structural model updating with multimodal variational autoencoder. Comput. Methods Appl. Mech. Eng. 2024, 429, 117148. [Google Scholar] [CrossRef]
- Mylonas, C.; Abdallah, I.; Chatzi, E. Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data. Wind Energy 2021, 24, 1122–1139. [Google Scholar] [CrossRef]
- Vlachas, K.; Simpson, T.; Garland, A.; Quinn, D.; Farhat, C.; Chatzi, E. Reduced Order Modeling conditioned on monitored features for response and error bounds estimation in engineered systems. Mech. Syst. Signal Process. 2025, 226, 112261. [Google Scholar] [CrossRef]
- Silionis, N.E.; Liangou, T.; Anyfantis, K.N. Deep learning-based surrogate models for spatial field solution reconstruction and uncertainty quantification in Structural Health Monitoring applications. Comput. Struct. 2024, 301, 107462. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, L.; Dziendzikowski, M.; Dragan, K.; Giglio, M.; Sbarufatti, C. Real-Time In-Service Load Tracking Toward Airframe Digital Twins. AIAA J. 2025, 1–14. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravanis, G.; Giglio, M.; Sbarufatti, C. On the Development of a Deep Learning-Based Surrogate Model for Fleet-Wide Probabilistic Modeling. Eng. Proc. 2025, 119, 20. https://doi.org/10.3390/engproc2025119020
Aravanis G, Giglio M, Sbarufatti C. On the Development of a Deep Learning-Based Surrogate Model for Fleet-Wide Probabilistic Modeling. Engineering Proceedings. 2025; 119(1):20. https://doi.org/10.3390/engproc2025119020
Chicago/Turabian StyleAravanis, Georgios, Marco Giglio, and Claudio Sbarufatti. 2025. "On the Development of a Deep Learning-Based Surrogate Model for Fleet-Wide Probabilistic Modeling" Engineering Proceedings 119, no. 1: 20. https://doi.org/10.3390/engproc2025119020
APA StyleAravanis, G., Giglio, M., & Sbarufatti, C. (2025). On the Development of a Deep Learning-Based Surrogate Model for Fleet-Wide Probabilistic Modeling. Engineering Proceedings, 119(1), 20. https://doi.org/10.3390/engproc2025119020

