Design and Implementation of an IoT-Based Respiratory Motion Sensor †
Abstract
1. Introduction
2. Methods
2.1. Hardware Overview
2.2. Micro-Controller Unit (MCU)
2.3. Force-Sensitive Resistor (FSR)
2.4. Power Management
2.5. Accelerometer
2.6. Firmware
2.7. Body Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreozzi, E.; Esposito, D.; Centracchio, J.; Bifulco, P.; Gargiulo, G.D. Respiration Monitoring via Forcecardiography Sensors. Sensors 2021, 21, 3996. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef] [PubMed]
- Torabi, Y.; Shirani, S.; Reilly, J.P. Exploring Sensing Devices for Heart and Lung Sound Monitoring. arXiv 2024, arXiv:2406.12432. [Google Scholar] [CrossRef]
- Li, S.; Park, W.H.; Borg, A. Phase-Dependent Respiratory-Motor Interactions in Reaction Time Tasks During Rhythmic Voluntary Breathing. Mot. Control 2012, 16, 493–505. [Google Scholar] [CrossRef][Green Version]
- De Troyer, A.; Kirkwood, P.A.; Wilson, T.A. Respiratory Action of the Intercostal Muscles. Physiol. Rev. 2005, 85, 717–756. [Google Scholar] [CrossRef]
- Lokavee, S.; Tantrakul, V.; Pengjiam, J.; Kerdcharoen, T. A Sleep Monitoring System Using Force Sensor and an Accelerometer Sensor for Screening Sleep Apnea. In Proceedings of the 2021 13th International Conference on Knowledge and Smart Technology (KST), Hua Hin, Thailand, 21–24 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 208–213. [Google Scholar] [CrossRef]
- Baraeinejad, B.; Forouzesh, M.; Babaei, S.; Naghshbandi, Y.; Torabi, Y.; Fazliani, S. Clinical IoT in Practice: A Novel Design and Implementation of a Multi-Functional Digital Stethoscope for Remote Health Monitoring. TechRxiv 2023. [Google Scholar] [CrossRef]
- Vanegas, E.; Igual, R.; Plaza, I. Sensing Systems for Respiration Monitoring: A Technical Systematic Review. Sensors 2020, 20, 5446. [Google Scholar] [CrossRef]
- Pino, E.J.; Arias, D.E.; Aqueveque, P.; Vilugrón, L.; Hermosilla, D.; Curtis, D.W. Monitoring Technology for Wheelchair Users with Advanced Multiple Sclerosis. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 961–964. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Chhetry, A.; Park, J.Y. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sens. J. 2017, 17, 6558–6564. [Google Scholar] [CrossRef]
- STMicroelectronics. MEMS Digital Output Motion Sensor: Ultra-Low-Power High-Performance 3-Axis “Femto” Accelerometer, LIS2DH12 Datasheet, Rev. 9; 2023. Available online: https://www.st.com/resource/en/datasheet/lis2dh12.pdf (accessed on 21 July 2025).
- Swanson, E.C.; Weathersby, E.J.; Cagle, J.C.; Sanders, J.E. Evaluation of Force Sensing Resistors for the Measurement of Interface Pressures in Lower Limb Prosthetics. J. Biomech. Eng. 2019, 141, 101009. [Google Scholar] [CrossRef]
- Nordic Semiconductor. nRF52832 Product Specification v1.4, Version 1.4; 10 October 2017. Available online: https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.4.pdf (accessed on 21 July 2025).
- Microchip Technology Inc. Stand-Alone Linear Li-Ion/Li-Polymer Charge Management Controller, MCP73833 Datasheet. Available online: https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22005b.pdf (accessed on 21 July 2025).
- Venkatasetty, H.; Jeong, Y. Recent Advances in Lithium-Ion and Lithium-Polymer Batteries. In Proceedings of the Seventeenth Annual Battery Conference on Applications and Advances (Cat. No. 02TH8576), Long Beach, CA, USA, 15–18 January 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 173–178. [Google Scholar] [CrossRef]
- Texas Instruments. TPS62840 1.8-V to 6.5-V, 750-mA, 60-nA IQ Step-Down Converter, Datasheet. Available online: https://www.ti.com/lit/ds/symlink/tps62840.pdf (accessed on 21 July 2025).
- Yaniger, S. Force Sensing Resistors: A Review of the Technology. In Proceedings of the Electro International, Boston, MA, USA, 12–14 May 1991; IEEE: Piscataway, NJ, USA, 1991; pp. 666–668. [Google Scholar] [CrossRef]
- Giovanelli, D.; Farella, E. Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing. J. Sens. 2016, 2016, 9391850. [Google Scholar] [CrossRef]
- Esposito, D.; Centracchio, J.; Andreozzi, E.; Bifulco, P.; Gargiulo, G.D. Design and Evaluation of a Low-Cost Electromechanical System to Test Dynamic Performance of Force Sensors at Low Frequencies. Machines 2022, 10, 1017. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, M.I.U. 3D Printing–A Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Son, J.; Lee, H. Preliminary Study on Polishing SLA 3D-Printed ABS-like Resins for Surface Roughness and Glossiness Reduction. Micromachines 2020, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Hua, J.; Li, J.; Jiang, Y.; Xie, S.; Shi, Y.; Pan, L. Skin-Attachable Sensors for Biomedical Applications. Biomed. Mater. Devices 2022, 1, 256–268. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, L.; Liu, Y.; Zhang, Y.; He, Y.; Wang, J. Multi-Component FBG-Based Force Sensing Systems by Comparison with Other Sensing Technologies: A Review. IEEE Sens. J. 2018, 18, 7345–7357. [Google Scholar] [CrossRef]
- Koehly, R.; Wanderley, M.M.; van de Ven, T.; Curtil, D. In-House Development of Paper Force Sensors for Musical Applications. Comput. Music J. 2014, 38, 22–35. [Google Scholar] [CrossRef]
- Saadeh, M.Y.; Carambat, T.D.; Arrieta, A.M. Evaluating and Modeling Force Sensing Resistors for Low Force Applications. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Snowbird, UT, USA, 18–20 September 2017; ASME: New York, NY, USA, 2017; Volume 58264, p. V002T03A001. [Google Scholar] [CrossRef]
- Hollinger, A.; Wanderley, M.M. Evaluation of Commercial Force-Sensing Resistors. In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), Paris, France, 4–8 June 2006; Citeseer: Princeton, NJ, USA, 2006; pp. 4–8. [Google Scholar]
- Castellini, C.; Ravindra, V. A Wearable Low-Cost Device Based upon Force-Sensing Resistors to Detect Single-Finger Forces. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil, 12–15 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 199–203. [Google Scholar] [CrossRef]
- Trejos, A.L.; Patel, R.V.; Naish, M.D. Force Sensing and Its Application in Minimally Invasive Surgery and Therapy: A Survey. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 1435–1454. [Google Scholar] [CrossRef]
- Muller, I.; Hu, J.; Zhu, Y.; Li, W. Load Cells in Force Sensing Analysis—Theory and a Novel Application. IEEE Instrum. Meas. Mag. 2010, 13, 15–19. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Q. An Overview of Micro-Force Sensing Techniques. Sens. Actuators A Phys. 2015, 234, 359–374. [Google Scholar] [CrossRef]
- Almassri, A.M.; Wan Hasan, W.Z.; Ahmad, S.A.; Ishak, A.J.; Ghazali, A.M.; Talib, D.N.M.A.; Nasir, N.M. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand. J. Sens. 2015, 2015, 846487. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, L.; Shen, Y.; Yang, Y.; Wang, W. Recent Progress in Flexible Pressure Sensor Arrays: From Design to Applications. J. Mater. Chem. C 2018, 6, 11878–11892. [Google Scholar] [CrossRef]
- Torabi, Y.; Shirani, S.; Reilly, J.P. Quantum Biosensors on Chip: A Review from Electronic and Photonic Integrated Circuits to Future Integrated Quantum Photonic Circuits. Microelectronics 2025, 1, 5. [Google Scholar] [CrossRef]
- Hosseinisangchi, S. A Wide-Band Frequency Domain Near Infrared Spectroscopy System on Chip. Master’s Thesis, University of California, Irvine, CA, USA, 2024. [Google Scholar]
- Torabi, Y.; Ekhteraei, A.; Baraeinejad, B. Inverse Design of Microring Resonator-Based Glucose Biosensor Using AI Diffusion Models. Optica Open 2025. [Google Scholar] [CrossRef]
- Vazifeh, A.R.; Fleischer, J.W. Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias. arXiv 2025, arXiv:2506.16494. [Google Scholar] [CrossRef]
- Torabi, Y.; Shirani, S.; Reilly, J.P. Large Language Model-Based Nonnegative Matrix Factorization for Cardiorespiratory Sound Separation. arXiv 2025, arXiv:2502.05757. [Google Scholar] [CrossRef]
- Rey, S.; Ajorlou, H.; Mateos, G. Directed Acyclic Graph Convolutional Networks. arXiv 2025, arXiv:2506.12218. [Google Scholar] [CrossRef]
- Golkarieh, A.; Razmara, P.; Lagzian, A.; Dolatabadi, A.; Mousavirad, S.J. Semi-Supervised GAN with Hybrid Regularization and Evolutionary Hyperparameter Tuning for Accurate Melanoma Detection. Sci. Rep. 2025, 15, 31977. [Google Scholar] [CrossRef]
- Movaheddrad, M.; Palmer, L.; Kuo, C. GUSL-Dehaze: A Green U-Shaped Learning Approach to Image Dehazing. arXiv 2025, arXiv:2510.20266. [Google Scholar] [CrossRef]








| Sensor Type | Advantages | Limitations |
|---|---|---|
| Force-Sensing Resistor (FSR) | Small size, low cost, good shock resistance and linear transfer function for small forces, high durability, no battery usage, capable of measuring a wide range of forces because they can be manufactured in different shapes and force ranges [26,27,28] | Non-negligible hysteresis for high force values, non-linearity at high forces, low repeatability, temperature sensitivity, aging drift, need for calibration [28] |
| Strain Gauge | Small size, multi-axis measurement, resistant to temperature changes, accuracy, linearity [29] | Sensitive to electromagnetic noise and changes in temperature [29] |
| Load Cell | Accuracy and reliability, wide measurement range, excellent linearity, strong resistance to temperature variation [30] | Bulky in size, rigid in construction, expensive electronic, higher power consumption than FSRs [26] |
| Capacitive Force Sensor | Low power consumption, large bandwidth high sensitivity, high resolution [31,32,33] | Complex circuit, sensitive to noise, sensitive to temperature [31,32,33] |
| Optical Force Sensor | High sensitivity to changes, flexible, high sensitivity [29,31] | Energy consumption, high price, bulky in size, light sensitivity [29,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baraeinejad, B.; Forouzesh, M.; Babaei, S.; Naghshbandi, Y.; Torabi, Y.; Fazliani, S. Design and Implementation of an IoT-Based Respiratory Motion Sensor. Eng. Proc. 2025, 118, 44. https://doi.org/10.3390/ECSA-12-26582
Baraeinejad B, Forouzesh M, Babaei S, Naghshbandi Y, Torabi Y, Fazliani S. Design and Implementation of an IoT-Based Respiratory Motion Sensor. Engineering Proceedings. 2025; 118(1):44. https://doi.org/10.3390/ECSA-12-26582
Chicago/Turabian StyleBaraeinejad, Bardia, Maryam Forouzesh, Saba Babaei, Yasin Naghshbandi, Yasaman Torabi, and Shabnam Fazliani. 2025. "Design and Implementation of an IoT-Based Respiratory Motion Sensor" Engineering Proceedings 118, no. 1: 44. https://doi.org/10.3390/ECSA-12-26582
APA StyleBaraeinejad, B., Forouzesh, M., Babaei, S., Naghshbandi, Y., Torabi, Y., & Fazliani, S. (2025). Design and Implementation of an IoT-Based Respiratory Motion Sensor. Engineering Proceedings, 118(1), 44. https://doi.org/10.3390/ECSA-12-26582

