Photocatalytic Activity of ZnFe2O4 for the Degradation of Fast Green FCF and Orange II †
Abstract
1. Introduction
2. Materials and Methods
3. Experiments
3.1. Synthesis of ZnFe2O4 NPs
3.2. Photocatalytic Activity Evaluation
4. Results and Discussion
4.1. Characterization
4.2. Photocatalytic Dye Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kodiya, M.A.; Modu, M.A.; Ishaq, K.; Yusuf, Z.; Wakili, A.Z.; Dayyabu, N.; Babangida, M.U. Environmental Pollution in Nigeria: Unlocking Integrated Strategies for Environmental Sustainability. Afr. J. Environ. Sci. Renew. Energy 2025, 18, 30–50. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, S.; Pathak, S.; Kasaudhan, J.; Mishra, A.; Bala, S.; Garg, D.; Singh, R.; Singh, P.; Singh, P.K.; et al. Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. Toxics 2023, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Kapanga, P.M.; Nyakairu, G.W.A.; Nkanga, C.I.; Lusamba, S.N.; Tshimanga, R.M.; Shehu, Z. A Review of Dye Effluents Polluting African Surface Water: Sources, Impacts, Physicochemical Properties, and Treatment Methods. Discov. Water 2024, 4, 85. [Google Scholar] [CrossRef]
- Kayani, K.F.; Mohammed, S.J.; Mustafa, M.S.; Aziz, S.B. Dyes and Their Toxicity: Removal from Wastewater Using Carbon Dots/Metal Oxides as Hybrid Materials—A Review. Mater. Adv. 2025. [CrossRef]
- Adesanmi, B.M.; Hung, Y.T.; Paul, H.; Huhnke, C. Comparison of Dye Wastewater Treatment Methods: A Review. GSC Adv. Res. Rev. 2022, 10, 126. [Google Scholar] [CrossRef]
- Sajith, M.; Hema, S.; Sambhudevan, S. A Comprehensive Review on Photocatalytic Degradation of Textile Dyes Using PANI–Semiconductor Composites. Water Air Soil Pollut. 2024, 235, 594. [Google Scholar] [CrossRef]
- Ganesan, S.; Kokulnathan, T.; Sumathi, S.; Palaniappan, A. Efficient Photocatalytic Degradation of Textile Dye Pollutants Using Thermally Exfoliated Graphitic Carbon Nitride (TE–g–C3N4). Sci. Rep. 2024, 14, 2284. [Google Scholar] [CrossRef]
- Jabeen, S.; Siddiqui, V.U.; Sharma, S.; Rai, S.; Bansal, P.; Bala, S.; Khan, T. A Novel Green Synthesis of CuFe2O4 Nanoparticles from Cissus rotundifolia for Photocatalytic and Antimicrobial Activity Evaluation. J. Alloys Compd. 2024, 984, 174020. [Google Scholar] [CrossRef]
- Jabeen, S.; Veg, E.; Bala, S.; Khan, T. Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step Towards Environmental Sustainability. Eng. Proc. 2024, 67, 8. [Google Scholar] [CrossRef]
- Khan, S.; Han, C.; Khan, H.M.; Boccelli, D.L.; Nadagouda, M.N.; Dionysiou, D.D. Efficient Degradation of Lindane by Visible and Simulated Solar Light-Assisted S-TiO2/Peroxymonosulfate Process: Kinetics and Mechanistic Investigations. Mol. Catal. 2017, 428, 9–16. [Google Scholar] [CrossRef]
- Ullah, R.; Khitab, F.; Gul, H.; Khattak, R.; Ihsan, J.; Khan, M.; Aouissi, H.A. Superparamagnetic Zinc Ferrite Nanoparticles as Visible-Light Active Photocatalyst for Efficient Degradation of Selected Textile Dye in Water. Catalysts 2023, 13, 1061. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Siddig, M.A.; Mirghni, A.A.; Omer, M.I.; Elbadawi, A.A. Structural and Optical Properties of Mg1−xZnxFe2O4 Nano-Ferrites Synthesized Using Co-Precipitation Method. Adv. Nanopart. 2015, 4, 45–52. [Google Scholar] [CrossRef]
- Sarkar, T.; Kundu, S.; Ghorai, G.; Sahoo, P.K.; Reddy, V.R.; Bhattacharjee, A. Synthesis and Characterization of Zinc Ferrite Nanomaterials vis-à-vis Studies on Their Photocatalytic Application in Visible Light Dye Degradation. Appl. Phys. A 2025, 131, 1–24. [Google Scholar] [CrossRef]
- Hatami Kahkesh, K.; Baghbantaraghdari, Z.; Jamaledin, D.; Dabbagh Moghaddam, F.; Kaneko, N.; Ghovvati, M. Synthesis, Characterization, Antioxidant and Antibacterial Activities of Zinc Ferrite and Copper Ferrite Nanoparticles. Mater. Chem. Horiz. 2023, 2, 49–56. [Google Scholar] [CrossRef]
- Sami, W.A.; Sadeq, Z.S. Synthesis and Study of Calcination Effect of Zinc Ferrite on the Structure and Morphology of Nanoparticles. J. Phys. Conf. Ser. 2021, 1999, 012060. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Khan, K.A.; Shah, A.; Nisar, J.; Haleem, A.; Shah, I. Photocatalytic Degradation of Food and Juice Dyes via Photocatalytic Nanomaterials Synthesized Through Green Synthetic Route: A Systematic Review. Molecules 2023, 28, 4600. [Google Scholar] [CrossRef]
- Sudhakaran, G.; Priya, P.S.; Murugan, R.; Haridevamuthu, B.; Kannan, J.; Almutairi, S.M.; Hussein, D.S.; Eisa, Y.H.; Kumaradoss, K.M.; Namasivayam, S.K.R.; et al. Follicular and Neural Toxic Effect of Prolonged Exposure of Synthetic Dye Fast Green FCF (E143)—Insights from Zebrafish Model. Toxicol. Lett. 2025, 413, 111726. [Google Scholar] [CrossRef]
- Chahbane, N.; Popescu, D.L.; Mitchell, D.A.; Chanda, A.; Lenoir, D.; Ryabov, A.D.; Collins, T.J. Fe(III)–TAML-Catalyzed Green Oxidative Degradation of the Azo Dye Orange II by H2O2 and Organic Peroxides: Products, Toxicity, Kinetics, and Mechanisms. Green Chem. 2007, 9, 49–57. [Google Scholar] [CrossRef]
- Rasheed-Adeleke, A.A.; Olatunde, O.C.; Seheri, N.H.; Oyewo, O.A.; Ferjani, H.; Onwudiwe, D.C. Synthesis and Photocatalytic Performance of ZnFe2O4 on the Degradation of Tetracycline in Water. Appl. Phys. A 2025, 131, 625. [Google Scholar] [CrossRef]
- Ullah, R. Semiconductor ZnFe2O4 as Efficient Photocatalyst for the Degradation of Organic Dyes: An Update. J. Chem. Rev. 2023, 5, 466–476. [Google Scholar] [CrossRef]
- Saridewi, N.; Utami, D.J.; Zulys, A.; Nurbayti, S.; Putri, A.R.; Kamal, R. Utilization of Lidah mertua (Sansevieria trifasciata) Extract for Green Synthesis of ZnFe2O4 Nanoparticle as Visible-Light Responsive Photocatalyst for Dye Degradation. Case Stud. Chem. Environ. Eng. 2024, 9, 100745. [Google Scholar] [CrossRef]
- Gowda, G.K.; Vishnu, K.T.; Prashantha, K.; Ajeya, K.P. Enhancing the Photocatalytic and Antimicrobial Activity of ZnFe2O4 by Composite with Ag2WO4 Semiconducting Material. Colloids Surf. C Environ. Asp. 2024, 2, 100037. [Google Scholar] [CrossRef]
- Kumar, S.; Jasrotia, R.; Verma, A.; Kandwal, A.; Ahmed, J.; Alshehri, S.M.; Kumari, S.; Godara, S.K.; Sharma, P. Superparamagnetic Dy-Modified ZnFe2O4 Magnetic Nanophotocatalysts for the Photocatalytic Degradation of Crystal Violet Pollutant. Appl. Phys. A 2024, 130, 258. [Google Scholar] [CrossRef]
- Duraisamy, K.; Venkatesan, S.; Sivaji, I.; Kosuru, R.Y.; Palaniyappan, P.; Sureshkumar, M.; Dhakshinamurthy, D. Green Synthesis of Zinc Ferrite Nanoparticles from Nyctanthes arbor-tristis: Unveiling Larvicidal Potential, Protein Binding Affinity and Photocatalytic Activities. Environ. Sci. Pollut. Res. 2024, 31, 53026–53039. [Google Scholar] [CrossRef]
- Aljawrneh, B.; Ocak, Y.S.; Albiss, B.A.; Dwiri, A.; Tawalbeh, M.; Al-Othman, A. ZrO2 Nanoparticles for Effective Dye Degradation in Wastewater: Synthesis, Characterization, and Photocatalytic Performance Under Sunlight. J. Alloys Compd. 2024, 1008, 176522. [Google Scholar] [CrossRef]
- Ghotekar, S.; Mishra, S.R.; Gadore, V.; Roy, S.; Ahmaruzzaman, M.; Singh, K.R.; Mirzaei, M. Insights into the Expeditious Photocatalytic Performance of Greenly Fabricated CeVO4 Nanoparticles Using Polyalthia longifolia Leaf Extract. Inorg. Chem. Commun. 2025, 172, 113665. [Google Scholar] [CrossRef]
- Abed, S.H.; Reshak, A.H. Illuminating the Power of V2O5 Nanoparticles: Efficient Photocatalytic Degradation of Organic Dyes Under Visible Light. J. Fluoresc. 2025, 35, 4335–4345. [Google Scholar] [CrossRef]
- Mharsale, N.N.; More, P.S.; Khollam, Y.B.; Shaikh, S.F.; Al-Enizi, A.M.; Gadakh, S.R. Visible Light-Induced Photocatalytic Degradation of Methylene Blue Dye Using Pure Phase Bismuth Ferrite Nanoparticles. J. Phys. Chem. Solids 2024, 192, 112049. [Google Scholar] [CrossRef]
- Parida, S.; Sarangi, B.; Nanda, J.; Pany, B. Green-Synthesized BiFeO3 Nanoparticles for Efficient Photocatalytic Degradation of Organic Dyes, Antibiotic and Catalytic Reduction of 4-Nitrophenol. Inorg. Chem. Commun. 2024, 170, 113344. [Google Scholar] [CrossRef]
- Divakara, S.G.; Mahesh, B.; Jayanna, B.K.; Anil Kumar, H.G. Photocatalytic Degradation of Crystal Violet Dye Using Honey-Mediated Synthesis of NiFe2O4 Nanoparticles. Green Chem. Lett. Rev. 2025, 18, 2543931. [Google Scholar] [CrossRef]
- Kumar, J.V.; Karthika, D.; Rosaiah, P.; Devanesan, S.; Mythili, R.; Dhananjaya, M.; Joo, S.W. Fabrication of SnO2/NGO Hybrid Nanocomposite as an Effective Photocatalyst for Binary Dye Degradation Under Sunlight Illumination. Process Saf. Environ. Prot. 2024, 188, 398–405. [Google Scholar] [CrossRef]
- Jabeen, S.; Ganie, A.S.; Ahmad, N.; Hijazi, S.; Bala, S.; Bano, D.; Khan, T. Fabrication and Studies of LaFe2O3/Sb2O3 Heterojunction for Enhanced Degradation of Malachite Green Dye Under Visible Light Irradiation. Inorg. Chem. Commun. 2023, 152, 110729. [Google Scholar] [CrossRef]
- Veg, E.; Raza, A.; Rai, S.; Bansal, P.; Sharma, S.; Mishra, N.; Gupta, R.; Mishra, S.; Joshi, S.; Khan, A.R.; et al. Green synthesis of ZnO and α-Fe2O3 nanoparticles using Chinese palm leaf extract and their biological and photocatalytic evaluation. RSC Sustain. 2025, 3, 5609–5631. [Google Scholar] [CrossRef]
- Veg, E.; Raza, A.; Bansal, P.; Rai, S.; Sharma, S.; Gupta, R.; Dwivedi, S.; Joshi, S.; Khan, A.R.; Khan, T. Synthesis and characterization of ZnO–thiosemicarbazone nanoconjugates for enhanced biological and photocatalytic activity through surface synergy. Inorg. Chem. Commun. 2025, 181, 115265. [Google Scholar] [CrossRef]
- Veg, E.; Raza, A.; Bansal, P.; Rai, S.; Sharma, S.; Gupta, R.; Dwivedi, S.; Fatima, N.; Joshi, S.; Khan, A.R.; et al. Ultrasonically synthesized CuO–thiosemicarbazone nanoconjugates: A study on interfacial interactions and synergistic biological and photocatalytic effects. Surf. Interfaces 2025, 107, 107271. [Google Scholar] [CrossRef]
- Jabeen, S.; Siddiqui, V.U.; Rastogi, S.; Srivastava, S.; Bala, S.; Ahmad, N.; Khan, T. Fabrication of B–CuO nanostructure and B–CuO/rGO binary nanocomposite: A comparative study in the context of photodegradation and antimicrobial activity assessment. Mater. Today Chem. 2023, 33, 101712. [Google Scholar] [CrossRef]








| S.No. | Nanomaterial | Dye | Time (Minutes) | Source | Degradation | Reference |
|---|---|---|---|---|---|---|
| 1 | ZrO2 NPs | Methylene blue | 80 | Sunlight | 80% | [27] |
| 2 | CeVO4 NPs | Congo red | 80 | Sunlight | 90% | [28] |
| 3 | V2O5 NPs | Methyl violet | 100 | Visible light | 85% | [29] |
| 4 | BiFeO3 NPs | Methylene blue | 120 | Visible light | 90% | [30] |
| 5 | BiFeO3 NPs | Rhodamine B | 90 | UV light | 80% | [31] |
| 6 | NiFe2O4 NPs | Crystal violet | 90 | UV light | 75.5% | [32] |
| 7 | SnO2/NGO nanocomposite | Methyl orange | 150 | Sunlight | 89.4% | [33] |
| 8 | LaFe2O3/Sb2O3 nanocomposite | Malachite green | 80 | Visible light | 86% | [34] |
| 9 | ZnO and α-Fe2O3 NPs | Malachite green | 90 | Visible light | 79% and 68% | [35] |
| 10 | ZnO–Thiosemicarbazone Nanoconjugates | Malachite green | 90 | Visible light | 90% | [36] |
| 11 | CuO–thiosemicarbazone nanoconjugates | Malachite green | 90 | Visible light | 84% | [37] |
| 12 | B-CuO/rGO nanocomposite | Methylene blue | 90 | Visible light | 90% | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, N.; Veg, E.; Dwivedi, S.; Pandey, A.; Khan, T. Photocatalytic Activity of ZnFe2O4 for the Degradation of Fast Green FCF and Orange II. Eng. Proc. 2025, 117, 4. https://doi.org/10.3390/engproc2025117004
Fatima N, Veg E, Dwivedi S, Pandey A, Khan T. Photocatalytic Activity of ZnFe2O4 for the Degradation of Fast Green FCF and Orange II. Engineering Proceedings. 2025; 117(1):4. https://doi.org/10.3390/engproc2025117004
Chicago/Turabian StyleFatima, Nashra, Ekhlakh Veg, Srishti Dwivedi, Anushka Pandey, and Tahmeena Khan. 2025. "Photocatalytic Activity of ZnFe2O4 for the Degradation of Fast Green FCF and Orange II" Engineering Proceedings 117, no. 1: 4. https://doi.org/10.3390/engproc2025117004
APA StyleFatima, N., Veg, E., Dwivedi, S., Pandey, A., & Khan, T. (2025). Photocatalytic Activity of ZnFe2O4 for the Degradation of Fast Green FCF and Orange II. Engineering Proceedings, 117(1), 4. https://doi.org/10.3390/engproc2025117004

