Next Issue
Volume 1, September

Table of Contents

Analytica, Volume 1, Issue 1 (June 2020) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Is It Possible to Measure Monobromamine Using Colorimetric Methods Based on the Berthelot Reaction, Like for Monochloramine?
Analytica 2020, 1(1), 1-11; https://doi.org/10.3390/analytica1010001 - 22 Apr 2020
Viewed by 287
Abstract
Analytical methods based on the Berthelot reaction were recently adapted for determining monochloramine (MCA: NH2Cl) in freshwater. The specificity of the Berthelot reaction with regard to MCA is related to the need for two exchangeable hydrogen atoms to form indophenol blue. [...] Read more.
Analytical methods based on the Berthelot reaction were recently adapted for determining monochloramine (MCA: NH2Cl) in freshwater. The specificity of the Berthelot reaction with regard to MCA is related to the need for two exchangeable hydrogen atoms to form indophenol blue. MCA can thus be distinguished from organic N-chloramines, which have only one exchangeable hydrogen atom. Monobromamine (MBA: NH2Br) may be formed during chlorination of seawater containing ammonium ions. Quantifying MBA is quite challenging and no method has been reported for its specific determination in seawater. As MBA also has two exchangeable hydrogen atoms, its reactivity might be analogous to that of MCA, but this hypothesis has never been investigated. The aim of this study was to examine the applicability of the so-called “indophenol method” for the determination of the MBA in freshwater and seawater samples. The reaction between MBA and Berthelot reagents was studied in both ultrapure water and artificial seawater. The reaction products were characterized by using gas chromatography coupled to mass spectrometry (GC–MS), Fourier transform-ion cyclotron resonance mass spectrometry (FT–ICR MS), and UV–vis spectroscopy. Results showed that colorimetric methods based on the Berthelot reaction were not suitable for measuring MBA in freshwater or seawater, since NH2Br reacts with alkaline phenol derivative via electrophilic substitution to form ortho- and para-brominated phenols instead of forming indophenol. Full article
Show Figures

Graphical abstract

Next Issue
Back to TopTop