Sustainable Biodegradable Starch–Collagen Polymeric Systems: Preparation, Characterization, and Efficacy for Slow Release of Organic Nitrogen, Phosphorus, and Potassium
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymeric Systems
2.3. Characterizations
2.3.1. Physicochemical Characterization
2.3.2. Biodegradability Assessment
2.3.3. Plant Growth Assessment
3. Results
3.1. Evaluation of the Structural Properties of the Polymeric Systems
3.2. Evaluation of the Biodegradability of the Developed Polymeric Systems
3.3. Evaluation of Seedling Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TPS | Thermoplastic starch |
| NPK | Nitrogen, Phosphorus, and Potassium |
| CRF | Controlled-release fertilizers |
| FTIR | Fourier-transform infrared spectroscopy |
| XRD | X-ray diffraction |
Appendix A

| Polymeric System | Moisture Content (%) | Ash Content (%) |
|---|---|---|
| TPSp | 7.27 | 1.78 |
| TPSR | 7.82 | 1.45 |
| TPSpCol | 6.76 | 19.21 |
| TPSRCol | 5.11 | 19.73 |
| TPSPU20 | 8.19 | 9.28 |
| TPSRU20 | 6.54 | 13.75 |
| TPSPU6.2 | 8.11 | 3.46 |
| TPSRU6.2 | 8.78 | 1.44 |
| TPSPNColPK | 3.08 | 30.06 |
| TPSRNColPK | 6.60 | 29.62 |
References
- Himmah, N.I.F.; Djajakirana, G.; Darmawan, D. Nutrient Release Performance of Starch Coated NPK Fertilizers and Their Effects on Corn Growth. Sains Tanah J. Soil. Sci. Agroclimatol. 2018, 15, 2. [Google Scholar] [CrossRef]
- Bi, S.; Barinelli, V.; Sobkowicz, M.J. Degradable controlled release fertilizer composite prepared via extrusion: Fabrication, characterization, and release mechanisms. Polymers 2020, 12, 301. [Google Scholar] [CrossRef]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Davidson, D.; Gu, F.X. Materials for Sustained and Controlled Release of Nutrients and Molecules to Support Plant Growth. J. Agric. Food Chem. 2012, 60, 870–876. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Valencia, G.A. Reactive extrusion-processed native and phosphated starch-based food packaging films governed by the hierarchical structure. Int. J. Biol. Macromol. 2021, 172, 439–451. [Google Scholar] [CrossRef]
- Kalita, A.; Elayarajan, M.; Janaki, P.; Suganya, S.; Sankari, A.; Parameswari, E. Organo-monomers coated slow-release fertilizers: Current understanding and prospects. Int. J. Biol. Macromol. 2024, 274, 133320. [Google Scholar] [CrossRef]
- dos Santos, A.C.S.; Henrique, H.M.; Cardoso, V.L.; Reis, M.H.M. Slow release fertilizer prepared with lignin and poly(vinyl acetate) bioblend. Int. J. Biol. Macromol. 2021, 185, 543–550. [Google Scholar] [CrossRef]
- Kavitha, R.; Latifah, O.; Ahmed, O.H.; Charles, P.W.; Susilawati, K. Potential of Rejected Sago Starch as a Coating Material for Urea Encapsulation. Polymers 2023, 15, 1863. [Google Scholar] [CrossRef]
- Scaffaro, R.; Citarrella, M.C.; Gulino, E.F. Opuntia Ficus Indica based green composites for NPK fertilizer controlled release produced by compression molding and fused deposition modeling. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107030. [Google Scholar] [CrossRef]
- Andrade, A.B.; Guelfi, D.R.; Chagas, W.F.T.; Cancellier, E.L.; de Souza, T.L.; Oliveira, L.S.S.; Faquin, V.; Du, C. Fertilizing maize croppings with blends of slow/controlled-release and conventional nitrogen fertilizers. J. Plant Nutr. Soil. Sci. 2021, 184, 227–237. [Google Scholar] [CrossRef]
- Jariwala, H.; Santos, R.M.; Lauzon, J.D.; Dutta, A.; Wai Chiang, Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: A comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environ. Sci. Pollut. Res. 2022, 29, 53967–53995. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Gundlapalli, M.; Ganesan, S. Polyhydroxyalkanoates (PHAs): Key Challenges in production and sustainable strategies for cost reduction within a circular economy framework. Results Eng. 2025, 26, 105345. [Google Scholar] [CrossRef]
- Patricio, P.S.d.O.; de Souza, P.P.; Do Couto, M.L.S.; Coura, Í.R. The Polymeric Carbohydrate: Starch—Extraction and Modifications. In Handbook of Biomass; Springer Nature: Singapore, 2024; pp. 775–807. [Google Scholar] [CrossRef]
- Gil, C.S.B.; Gil, V.S.B.; Carvalho, S.M.; Silva, G.R.; Magalhães, J.T.; Oréfice, R.L.; Mansur, A.; Mansur, H.S.; Patricio, P.S.O.; Oliveira, L.C.A. Recycled collagen films as biomaterials for controlled drug delivery. New J. Chem. 2016, 40, 8502–8510. [Google Scholar] [CrossRef]
- Mansouri, H.; Ait Said, H.; Noukrati, H.; Oukarroum, A.; Ben Youcef, H.; Perreault, F. Advances in Controlled Release Fertilizers: Cost-Effective Coating Techniques and Smart Stimuli-Responsive Hydrogels. Adv. Sustain. Syst. 2023, 7, 2300149. [Google Scholar] [CrossRef]
- Lubkowski, K.; Smorowska, A.; Sawicka, M.; Wróblewska, E.; Dzienisz, A.; Kowalska, M.; Sadłowski, M. Ethylcellulose as a coating material in controlled-release fertilizers. Pol. J. Chem. Technol. 2019, 21, 52–58. [Google Scholar] [CrossRef]
- Versino, F.; Urriza, M.; García, M.A. Eco-compatible cassava starch films for fertilizer controlled-release. Int. J. Biol. Macromol. 2019, 134, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Perez Bravo, J.J.; François, N.J. Chitosan/Starch Matrices Prepared by Ionotropic Gelation: Rheological Characterization, Swelling Behavior and Potassium Nitrate Release Kinetics. J. Polym. Environ. 2020, 28, 2681–2690. [Google Scholar] [CrossRef]
- Chen, L.; Xie, Z.; Zhuang, X.; Chen, X.; Jing, X. Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydr. Polym. 2008, 72, 342–348. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Van Zwieten, L.; Wong, V.N.L.; Patti, A.F. Slow Release Brown Coal-Urea Fertilizer Potentially Influences Greenhouse Gas Emissions, Nitrogen Use Efficiency, and Sweet Corn Yield in Oxisol. ACS Agric. Sci. Technol. 2021, 1, 469–478. [Google Scholar] [CrossRef]
- Bergstrand, K.J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Stefan, D.S.; Zainescu, G.; Manea-Saghin, A.M.; Triantaphyllidou, I.E.; Tzoumani, I.; Tatoulis, T.I.; Syriopoulos, G.T.; Meghea, A. Collagen-based hydrogels composites from hide waste to produce smart fertilizers. Materials 2020, 13, 4396. [Google Scholar] [CrossRef]
- Tzoumani, I.; Lainioti GCh Aletras, A.J.; Zainescu, G.; Stefan, S.; Meghea, A.; Kallitsis, J.K. Modification of Collagen Derivatives with Water-Soluble Polymers for the Development of Cross-Linked Hydrogels for Controlled Release. Materials 2019, 12, 4067. [Google Scholar] [CrossRef] [PubMed]
- Doina Niculescu, M.; Gaidau, C.; Gabriel Epure, D.; Gidea, M. Experimental Observations about Improving the Properties of Collagen Extracts for Applications in Agriculture. Rev. Chim. 2018, 69, 379–385. [Google Scholar] [CrossRef]
- Nogueira, F.G.E.; do Prado, N.T.; Oliveira, L.C.A.; Bastos, A.R.R.; Lopes, J.H.; de Carvalho, J.G. Incorporation of mineral phosphorus and potassium on leather waste (collagen): A new NcollagenPK-fertilizer with slow liberation. J. Hazard. Mater. 2010, 176, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, W.; Tan, X.; Wang, P.; Shi, Z.; Lv, J.; Zhao, M.; Dong, G. Preparation and characterization on a dual-layer slow-release urea fertilizer coated using ethyl cellulose and phosphoric acid-carbamate di-esterified starch-based chitosan hydrogel. Carbohydr. Polym. 2025, 368, 124212. [Google Scholar] [CrossRef]
- Tan, X.; Dong, G.; Shi, Z.; Zhang, D.; Liu, D.; Wang, Y.; Li, J.; Wang, P.; Zhang, W. Preparation and characterization of double-coated slow-release urea fertilizer encapsulated with polymethylmethacrylate and sulfonated cellulose derivatives modified sodium alginate hydrogel. Int. J. Biol. Macromol. 2025, 319, 145572. [Google Scholar] [CrossRef]
- Mu, Z.; Zhang, W.; Chai Dfeng Lv, Q.; Tan, X.; Yuan, R.; Dong, G. Preparation and characterization of slow-release urea fertilizer encapsulated by a blend of starch derivative and polyvinyl alcohol with desirable biodegradability and availability. Int. J. Biol. Macromol. 2024, 271, 132693. [Google Scholar] [CrossRef]
- Matusinho, I.A.d.S.; Ramos, T.F.; de Oliveira, J.B.; Pedroso, E.F.; de Souza, P.P.; Patricio, P.S.d.O. Influence of Starch Source on Properties of Blends Based on Thermoplastic Starch and Poly(Butylene-Adipate-Co-Terephthalate). Carbohydr. Polym. Technol. Appl. 2024, 7, 100433. [Google Scholar] [CrossRef]
- Rodrigues, A.P.H.; de Souza, S.D.; Gil, C.S.B.; Pereira, F.V.; de Oliveira, L.C.A.; de Oliveira Patricio, P.S. Biobased nanocomposites based on collagen, cellulose nanocrystals, and plasticizers. J. Appl. Polym. Sci. 2017, 134, 44954. [Google Scholar] [CrossRef]
- Tatongjai, J.; Lumdubwong, N. Physicochemical properties and textile utilization of low- and moderate-substituted carboxymethyl rice starches with various amylose content. Carbohydr. Polym. 2010, 81, 377–384. [Google Scholar] [CrossRef]
- Reis, K.C.; Pereira, J.; Smith, A.C.; Carvalho, C.W.P.; Wellner, N.; Yakimets, I. Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J. Food Eng. 2008, 89, 361–369. [Google Scholar] [CrossRef]
- Wang, J.L.; Cheng, F.; Zhu, P.X. Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr. Polym. 2014, 101, 1109–1115. [Google Scholar] [CrossRef]
- Mahieu, A.; Terrié, C.; Agoulon, A.; Leblanc, N.; Youssef, B. Thermoplastic starch and poly(ε-caprolactone) blends: Morphology and mechanical properties as a function of relative humidity. J. Polym. Res. 2013, 20, 229. [Google Scholar] [CrossRef]
- Vedove, T.M.A.R.D.; Maniglia, B.C.; Tadini, C.C. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J. Food Eng. 2021, 289, 110274. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Das, A.; Mahanwar, P.A.; Gadekar, P.T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 08, 21–33. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Q.; Ding, T.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Ageing of soft thermoplastic starch with high glycerol content. J. Appl. Polym. Sci. 2007, 103, 574–586. [Google Scholar] [CrossRef]
- Gamarano, D.d.S.; Pereira, I.M.; da Silva, M.C.; Mottin, A.C.; Ayres, E. Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polym. Bull. 2020, 77, 4971–4992. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J. The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch Staerke 2004, 56, 545–551. [Google Scholar] [CrossRef]
- Behera, D.; Pattnaik, S.S.; Patra, S.S.; Barick, A.K.; Pradhan, J.; Behera, A.K. Development and characterization of water hyacinth reinforced thermoplastic starch as sustainable biocomposites. RSC Sustain. 2025, 3, 1807–1818. [Google Scholar] [CrossRef]








| Materials | Collagen (%) | Urea (%) | K2HPO4 (%) | N (%) | P (%) | K (%) |
|---|---|---|---|---|---|---|
| TPSp * | 0 | 0 | 0 | 0 | 0 | 0 |
| TPSR ** | 0 | 0 | 0 | 0 | 0 | 0 |
| TPSpCol | 20.0 | 0 | 0 | 2.8 | 0 | 0 |
| TPSRCol | 20.0 | 0 | 0 | 2.8 | 0 | 0 |
| TPSP U20 | 0 | 20 | 0 | 9.0 | 0 | 0 |
| TPSRU20 | 0 | 20 | 0 | 9.0 | 0 | 0 |
| TPSP U6.2 | 0 | 6.2 | 0 | 2.8 | 0 | 0 |
| TPSRU6.2 | 0 | 6.2 | 0 | 2.8 | 0 | 0 |
| TPSpNColPK | 20.0 | 0 | 15.0 | 2.8 | 2.7 | 6.7 |
| TPSRNColPK | 20.0 | 0 | 15.0 | 2.8 | 2.7 | 6.7 |
| Material Without Citric Acid | Crystallinity Index (%) | Material with Citric Acid | Crystallinity Index (%) |
|---|---|---|---|
| TPSp | 6.23 | TPSR | 7.70 |
| TPSp Col | 3.84 | TPSR Col | 4.52 |
| TPSp NcolPK | 5.99 | TPSR NcolPK | 4.70 |
| TPSp U6.2 | 4.16 | TPSR U6.2 | 4.06 |
| TPSp U20 | 2.84 | TPSR U20 | 2.65 |
| Mass Loss Percentage (%) | |||||
|---|---|---|---|---|---|
| Polymeric System | 15 Days | 30 Days | 45 Days | 60 Days | 75 Days |
| TPSp | 5.84 | 19.22 | 27.84 | 30.09 | 32.66 |
| TPSR | 3.20 | 12.59 | 15.28 | 18.86 | 23.75 |
| TPSpCol | 51.08 | 53.94 | 71.30 | 82.67 | 87.74 |
| TPSRCol | 37.63 | 42.24 | 68.93 | 81.61 | 85.45 |
| TPSPU20 | 21.99 | 42.92 | 66.55 | 75.85 | 84.58 |
| TPSRU20 | 27.67 | 61.20 | 68.92 | 82.47 | 91.75 |
| TPSPU6.2 | 19.59 | 35.59 | 56.39 | 63.14 | 68.16 |
| TPSRU6.2 | 23.47 | 44.05 | 64.04 | 78.60 | 83.76 |
| TPSPNColPK | 70.58 | 71.14 | 100 | – | – |
| TPSRNColPK | 67.12 | 76.71 | 94.92 | 100 | – |
| Polymeric System | Height of Seedlings * (cm) |
|---|---|
| Without a polymeric matrix | 4.5 |
| TPSP | 5.0 |
| TPSR | 4.5 |
| TPSPCol | 6.2 |
| TPSRCol | 5.2 |
| TPSPU6.2 | 6.9 |
| TPSRU6.2 | 7.8 |
| TPSPNColPK | 6.5 |
| TPSR NColPK | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, M.L.S.; Matusinho, I.A.d.S.; Souza, P.P.; Oliveira, L.C.A.; Patricio, P.S.d.O. Sustainable Biodegradable Starch–Collagen Polymeric Systems: Preparation, Characterization, and Efficacy for Slow Release of Organic Nitrogen, Phosphorus, and Potassium. Polysaccharides 2025, 6, 113. https://doi.org/10.3390/polysaccharides6040113
Couto MLS, Matusinho IAdS, Souza PP, Oliveira LCA, Patricio PSdO. Sustainable Biodegradable Starch–Collagen Polymeric Systems: Preparation, Characterization, and Efficacy for Slow Release of Organic Nitrogen, Phosphorus, and Potassium. Polysaccharides. 2025; 6(4):113. https://doi.org/10.3390/polysaccharides6040113
Chicago/Turabian StyleCouto, Maíra L. S., Ingrid A. dos S. Matusinho, Patterson P. Souza, Luiz C. A. Oliveira, and Patrícia S. de O. Patricio. 2025. "Sustainable Biodegradable Starch–Collagen Polymeric Systems: Preparation, Characterization, and Efficacy for Slow Release of Organic Nitrogen, Phosphorus, and Potassium" Polysaccharides 6, no. 4: 113. https://doi.org/10.3390/polysaccharides6040113
APA StyleCouto, M. L. S., Matusinho, I. A. d. S., Souza, P. P., Oliveira, L. C. A., & Patricio, P. S. d. O. (2025). Sustainable Biodegradable Starch–Collagen Polymeric Systems: Preparation, Characterization, and Efficacy for Slow Release of Organic Nitrogen, Phosphorus, and Potassium. Polysaccharides, 6(4), 113. https://doi.org/10.3390/polysaccharides6040113

