Engineering Geological Characterization of Soils and Rocks for Urban Planning: A Case Study from Wolaita Sodo Town, Southern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Secondary Data Collection
2.3.2. Field Data Collection
2.3.3. Laboratory Analysis
Natural Moisture Content
Specific Gravity
Grain Size Analysis
Atterberg Limit
Linear Shrinkage Limit of Soils
Free Swell
Unconfined Compressive Strength
2.3.4. Data Processing and Interpretation
3. Results
3.1. Engineering Geological Characterization and Classification of Soils
3.1.1. Engineering Geological Characterization of Soils
Natural Moisture Content
Specific Gravity
Grain Size Analysis
Atterberg (Consistency) Limit
Activity of Soils
Linear Shrinkage Limit of Soils
Free Swell
Unconfined Compressive Strength
3.1.2. Engineering Geological Classification of Soils
3.2. Engineering Geological Characterization and Classification of Rock Masses
3.2.1. Engineering Geological Characterization of Rock Masses
3.2.2. Engineering Geological Classification of Rock Masses
Rock Mass Classification Based on Degree of Weathering and Strength Tests
- Highly to completely weathered, very weak ignimbrite (Rocks with very low mass strength)
- Moderately weathered, weak ignimbrite (Rocks with low mass strength)
- Slightly weathered, medium-strong ignimbrite (Rocks with medium mass strength)
- Fresh, strong ignimbrite (Rocks with high mass strength)
Rock Mass Classification Based on Uniaxial Compressive Strength (UCS)
Rock Mass Classification Based on Rock Quality Designation (RQD)
Rock Mass Classification Based on Rock Mass Rating (RMR)
- Class I (Very Good)—Higher rock mass quality.
- Class II (Good)—Moderate rock mass quality.
- Class III (Fair)—Lower rock mass quality.
3.3. Surface Geodynamic Processes
3.3.1. Rill Erosion
3.3.2. Gully Erosion
3.3.3. Weathering
3.3.4. Rockslide
3.3.5. Rock Toppling
3.4. Effects of Groundwater on Engineering Structures
3.5. Geology of the Study Area
3.5.1. Ignimbrite
3.5.2. Thick Residual Soil Deposit
3.5.3. Geological Map and Structures
3.5.4. Geological Log Description of Boreholes in the Study Area
3.6. Engineering Geological Mapping of Wolaita Sodo Town
4. Discussion
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saad, A.M.; Sakr, M.A.; Selim, M.S.; Taalab, S.A.; Zakaly, H.M.; Aboueldahab, S.M.; Omar, A.E.; Zayed, M.; Issa, S.A.; Awad, H.A. Geotechnical and geophysical investigations for infrastructure safety zones: A case study of the supporting ring road, Cairo, Egypt. Sci. Rep. 2024, 14, 29670. [Google Scholar] [CrossRef]
- Abija, F.A. Ground variation, geotechnical uncertainties and reliability of Foundation Design for Sustainable Building Infrastructures with case histories. J. Mater. Sci. Eng. Technol. 2023, 1, 1–11. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W.; Akhter, G. Site suitability for engineering-infrastructure (EI) development and groundwater exploitation using integrated geophysical approach in Guangdong, China. Bull. Eng. Geol. Environ. 2022, 81, 7. [Google Scholar] [CrossRef]
- Wang, M.; Yin, X. Construction and maintenance of urban underground infrastructure with digital technologies. Autom. Constr. 2022, 141, 104464. [Google Scholar] [CrossRef]
- Roy, S.; Bhalla, S.K. Role of geotechnical properties of soil on civil engineering structures. Resour. Environ. 2017, 7, 103–109. [Google Scholar] [CrossRef]
- Basu, D.; Misra, A.; Puppala, A.J. Sustainability and geotechnical engineering: Perspectives and review. Can. Geotech. J. 2015, 52, 96–113. [Google Scholar] [CrossRef]
- Petrone, P.; Allocca, V.; Fusco, F.; Incontri, P.; De Vita, P. Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: The case study of the Nola’s logistic plant (southern Italy). Bull. Eng. Geol. Environ. 2023, 82, 12. [Google Scholar] [CrossRef]
- Liu, D.; Liu, H.; Wu, Y.; Zhang, W.; Wang, Y.; Santosh, M. Characterization of geo-material parameters: Gene concept and big data approach in geotechnical engineering. Geosyst. Geoenviron. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Ameratunga, J.; Sivakugan, N.; Das, B.M. Correlations of Soil and Rock Properties in Geotechnical Engineering; Springer Nature: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Palmstrom, A.; Stille, H. Ground behaviour and rock engineering tools for underground excavations. Tunn. Undergr. Space Technol. 2007, 22, 363–376. [Google Scholar] [CrossRef]
- Seshagiri Rao, K. Characterization, modelling and engineering of rocks and rockmasses. Indian Geotech. J. 2020, 50, 1–95. [Google Scholar] [CrossRef]
- Gobinath, R.; Ganapathy, G.P.; Gayathiri, E.; Salunkhe, A.A.; Pourghasemi, H.R. Ecoengineering practices for soil degradation protection of vulnerable hill slopes. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 255–270. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Li, D. Bayesian perspective on geotechnical variability and site characterization. Eng. Geol. 2016, 203, 117–125. [Google Scholar] [CrossRef]
- Fonseca, A.V.; Carvalho, J.; Ferreira, C.; Santos, J.A.; Almeida, F.; Pereira, E.; Feliciano, J.; Grade, J.; Oliveira, A. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotech. Geol. Eng. 2006, 24, 1307–1348. [Google Scholar] [CrossRef]
- Budhu, M. Soil Mechanics and Foundations; John Wiley and Sons. Inc.: New York, NY, USA, 2000. [Google Scholar]
- Jiayin, G.; Mingfei, Z.; Zhaoguang, H.; Wei, S. Influence of expressway construction on the ecological environment and the corresponding treatment measures: A case study of changyu (changchun-fuyu lalin river) expressway, China. Nat. Environ. Pollut. Technol. 2020, 19, 1195–1201. [Google Scholar] [CrossRef]
- Gattinoni, P.; Pizzarotti, E.M.; Scesi, L.; Gattinoni, P.; Pizzarotti, E.M.; Scesi, L. Geological problems in underground works design and construction. In Engineering Geology for Underground Works; Spring Nature: Dordrecht, The Netherlands, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- Domone, P.; Illston, J. Construction Materials: Their Nature and Behaviour; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Kirchberger, M. Developing Countries. In Mining for Change: Natural Resources and Industry in Africa; Oxford Academic: Oxford, UK, 2020; pp. 51–73. [Google Scholar] [CrossRef]
- Sinesilassie, E.G.; Tabish, S.Z.; Jha, K.N. Critical factors affecting cost performance: A case of Ethiopian public construction projects. Int. J. Constr. Manag. 2018, 18, 108–119. [Google Scholar] [CrossRef]
- Hashemnejad, A.; Aghda, S.M.; Talkhablou, M. Introducing a new classification of soft rocks based on the main geological and engineering aspects. Bull. Eng. Geol. Environ. 2021, 80, 4235–4254. [Google Scholar] [CrossRef]
- De Vallejo, L.G.; Ferrer, M. Geological Engineering; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- ASTM D2488-00; Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). ASTM International: West Conshohocken, PA, USA, 2000.
- ISRM. Rock Characterization Testing and Monitoring; Brown, E.T., Ed.; ISRM suggested methods; Royal School of Mines: London UK, 1981. [Google Scholar]
- Basu, A.; Aydin, A. A method for normalization of Schmidt hammer rebound values. Int. J. Rock Mech. Min. Sci. 2004, 41, 1211–1214. [Google Scholar] [CrossRef]
- Kılıç, A.; Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. 2008, 67, 237–244. [Google Scholar] [CrossRef]
- ISRM International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar]
- Priest, S.D.; Hudson, J.A. Discontinuity spacings in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 135–148. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- ASTM D422–63(2007)e2; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- Pitts, J. A Manual of Geology for Civil Engineers; World Scientific Pub Co., Pte Ltd.: Singapore, 1985. [Google Scholar]
- Kalantari, B. Construction of Foundations on Expansive Soils; University of Missouri Columbia: Columbia, MO, USA, 1991. [Google Scholar]
- Skempton, A.W. The colloidal activity of clays. In Selected Papers on Soil Mechanics; Thomas Telford: London, UK, 1953; pp. 57–61. [Google Scholar]
- Ranganatham, B.V.; Satyanarayana, B. A rational method of predicting swelling potential for compacted expansive clays. In Proceedings of the 6th International Conference on Soils Mechanics and Foundation Engineering, Montreal, QC, Canada, 15 September 1965; pp. 92–96. [Google Scholar]
- Scheidig, A.; Koegler, F. Der Löss und Seine Geotechnischen Eigenschaften: Geologie und Verbreitung, Erdstoffphysik, Erdbaumechanik und Geotechnik der Löße und Lößlehme, Schluffe, Silte und Anderer Stauberden Aschen und Staube; Verlag von Theodor Steinkopff: Dresden, Germany, 1934. [Google Scholar]
- Holtz, W.G.; Gibbs, H.J. Engineering properties of expansive clays. Trans. Am. Soc. Civ. Eng. 1956, 121, 641–663. [Google Scholar] [CrossRef]
- Das, B.M. Principles of Geotechnical Engineering, 7th ed.; Cengage Learning: Stamford, CT, USA, 2010. [Google Scholar]
- Mohammed, H.; Dahunsi, B.I. Effects of natural moisture content on selected engineering properties of soils. Transnatl. J. Sci. Technol. 2012, 2, 29–47. [Google Scholar]
- Federico, A.M.; Miccoli, D.; Murianni, A.; Vitone, C. An indirect determination of the specific gravity of soil solids. Eng. Geol. 2018, 239, 22–26. [Google Scholar] [CrossRef]
- Chemeda, Y.C. Engineering Geological Investigation of Adama Town: Implication to Engineering Practice. Ethiop. J. Sci. Sustain. Dev. 2020, 29, 103–116. [Google Scholar] [CrossRef]
- Ma, S.; Song, Y.; Liu, J.; Kang, X.; Yue, Z.Q. Extended wet sieving method for determination of complete particle size distribution of general soils. J. Rock Mech. Geotech. Eng. 2024, 16, 242–257. [Google Scholar] [CrossRef]
- Asuri, S.; Keshavamurthy, P. Expansive soil characterisation: An appraisal. INAE Lett. 2016, 1, 29–33. [Google Scholar] [CrossRef]
- Hearn, G.J. A3 Slope materials, landslide causes and landslide mechanisms. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2011, 24, 15–57. [Google Scholar] [CrossRef]
- Ye, J.; Wang, K.; Qiu, Z.; Wang, X. Assessing the Settlement and Deformation of Pile-Supported Embankments Undergoing Groundwater-Level Fluctuations: An Experimental and Simulation Study. Build 2024, 14, 2661. [Google Scholar] [CrossRef]
- Deng, S.; Xia, J.; Zhou, M.; Zhou, Y.; Liu, X.; Li, Z. Riparian groundwater level variation and its impacts on bank erosion in the Middle Yangtze River. Water Resour. Res. 2022, 58, e2022WR032354. [Google Scholar] [CrossRef]
- Zuquette, L.V.; Pejon, O.J.; dos Santos Collares, J.Q. Engineering geological mapping developed in the Fortaleza metropolitan region, State of Ceara, Brazil. Eng. Geol. 2004, 71, 227–253. [Google Scholar] [CrossRef]
- Bell, F.G.; Cripps, J.C.; Culshaw, M.G. A review of the engineering behaviour of soils and rocks with respect to groundwater. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2001, 17, 299–306. [Google Scholar] [CrossRef]
- Savvides, A.-A.; Antoniou, A.A.; Papadopoulos, L.; Monia, A.; Kofina, K. An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks. Geotechnics 2023, 3, 975–988. [Google Scholar] [CrossRef]
- Yılmaz, I.; Yuksek, A. An Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters. Rock Mech. Rock Eng. 2008, 41, 781–795. [Google Scholar] [CrossRef]
Test Pits | Location (UTM, N and E with Elev) | Name of Local Place | Depth (m) | Water Content % | Specific Gravity (Gs) |
---|---|---|---|---|---|
TP1 | N0362460, 0759693 E 2080 m | Kidane Mihret | 1.50 | 44.21 | 2.75 |
TP2 | N0361690, 0759106 E 2053 m | Geneme/Radio station | 1.30 | 34.26 | 2.68 |
TP3 | N0362261, 0759000 E 2049 m | Aroge Arada Condominium | 3 | 38.27 | 2.68 |
TP4 | N0362464, 0756179 E 2003 m | Above university-Adebabay | 1.20 | 37.68 | 2.74 |
TP5 | N0362867, 0759874 E 2112 m | Teklehaimanot Gedam | 1.25 | 31.57 | 2.68 |
TP6 | N0362432, 0758188 E 2024 m | Rufael sefer-mar sefer | 1 | 23.47 | 2.69 |
N0362432, 0758188 E 2024 m | Rufael sefer-mar sefer | 1.50 | 29.56 | 2.75 | |
TP7 | N0362027, 0757081 E 2043 m | Primary academy | 1.20 | 35.24 | 2.69 |
TP8 | N0363410, 0759163 E 2110 m | Gola sefer-Mezegaja | 1.20 | 38.08 | 2.75 |
TP9 | N0364049, 0758777 E 2035 m | Merkato Menafesha | 2 | 35.47 | 2.68 |
TP10 | N0363397, 0756740 E 2042 m | Buna kimsha area | 2 | 40.73 | 2.81 |
TP11 | N0361664, 0756123 E 1961 m | Exit of Sawla road | 1 | 33.46 | 2.69 |
TP12 | N0363843, 0757530 E 1977 m | Kera-Koka sefer | 3 | 33.66 | 2.81 |
TP13 | N0363570, 0757903 E 2016 m | Mariam church school | 1.20 | 30.09 | 2.73 |
TP14 | N0363978, 0758218 E 2015 m | Bunabort near Gebeya sefer | 2 | 38.18 | 2.69 |
TP15 | N0362145, 0755119 | Wolaita Sodo University | 2 | 29.81 | 2.81 |
Test Pits | Depth (m) | %Gravel | %Sand | %Silt | %Clay |
---|---|---|---|---|---|
TP1 | 1.50 | 0.00 | 19.98 | 19.91 | 60.11 |
TP2 | 1.30 | 0.00 | 19.14 | 26.94 | 53.92 |
TP3 | 3 | 0.10 | 15.59 | 34.28 | 50.03 |
TP4 | 1.20 | 0.00 | 6.41 | 35.82 | 57.77 |
TP5 | 1.25 | 0.00 | 11.07 | 43.82 | 45.11 |
TP6 | 1 | 1.80 | 21.04 | 38.1 | 39.05 |
1.50 | 11.67 | 26.80 | 26.91 | 34.61 | |
TP7 | 1.20 | 1.45 | 16.69 | 40.42 | 41.43 |
TP8 | 1.20 | 0.40 | 6.01 | 43.88 | 49.71 |
TP9 | 2 | 0.00 | 13.03 | 41.74 | 45.23 |
TP10 | 2 | 0.30 | 12.83 | 43.17 | 43.70 |
TP11 | 1 | 0.10 | 11.77 | 46.33 | 41.80 |
TP12 | 3 | 0.20 | 6.97 | 44.12 | 48.71 |
TP13 | 1.20 | 0.50 | 23.10 | 33.24 | 43.16 |
TP14 | 2 | 0.00 | 10.38 | 47.11 | 42.51 |
TP15 | 2 | 0.15 | 25.13 | 34.82 | 39.90 |
Test Pits | Depth (m) | W% | LL% | PL% | PI | LI | CI | % Clay Fraction | Activity |
---|---|---|---|---|---|---|---|---|---|
TP1 | 1.50 | 44.21 | 41.48 | 20.03 | 21.45 | 1.13 | −0.13 | 60.11 | 0.36 |
TP2 | 1.30 | 34.26 | 48.28 | 19.64 | 28.64 | 0.51 | 0.49 | 53.92 | 0.53 |
TP3 | 3 | 38.27 | 51.42 | 22.06 | 29.36 | 0.55 | 0.45 | 50.03 | 0.59 |
TP4 | 1.20 | 37.68 | 53.48 | 21.62 | 31.85 | 0.5 | 0.5 | 57.77 | 0.55 |
TP5 | 1.25 | 31.57 | 43.66 | 19.48 | 24.18 | 0.5 | 0.5 | 45.11 | 0.54 |
TP6 | 1 | 23.47 | 41.96 | 24.51 | 17.45 | −0.06 | 1.06 | 39.05 | 0.45 |
1.50 | 29.56 | 45.58 | 18.55 | 27.03 | 0.41 | 0.59 | 34.61 | 0.78 | |
TP7 | 1.20 | 35.24 | 45.28 | 24.51 | 20.77 | 0.52 | 0.48 | 41.43 | 0.5 |
TP8 | 1.20 | 38.08 | 46.29 | 16.25 | 30.04 | 0.73 | 0.27 | 49.71 | 0.6 |
TP9 | 2 | 35.47 | 48.50 | 19.48 | 29.03 | 0.55 | 0.45 | 45.23 | 0.64 |
TP10 | 2 | 40.73 | 54.72 | 25.54 | 29.18 | 0.52 | 0.48 | 43.70 | 0.67 |
TP11 | 1 | 33.46 | 41.11 | 27.08 | 14.02 | 0.46 | 0.55 | 41.80 | 0.34 |
TP12 | 3 | 33.66 | 39.97 | 15.47 | 24.50 | 0.74 | 0.26 | 48.71 | 0.5 |
TP13 | 1.20 | 30.09 | 43.53 | 21.62 | 21.91 | 0.39 | 0.61 | 43.16 | 0.51 |
TP14 | 2 | 38.18 | 43.93 | 27.08 | 16.84 | 0.66 | 0.34 | 42.51 | 0.4 |
TP15 | 2 | 29.81 | 40.86 | 16.99 | 23.87 | 0.54 | 0.46 | 39.90 | 0.6 |
Test Pits | Depth (m) | Li (cm) | Lf (cm) | Sr % | SI | Quality Based on Shrinkage Limit Value | Potential of Swelling Based on the Shrinkage Index Value |
---|---|---|---|---|---|---|---|
TP1 | 1.50 | 14 | 12.8 | 8.57 | 19.21 | Medium | Low |
TP2 | 1.30 | 14 | 12.9 | 7.86 | 22.7 | Medium | Medium |
TP3 | 3 | 14 | 13.1 | 6.43 | 26.9 | Medium | Medium |
TP4 | 1.20 | 14 | 13 | 7.14 | 26.19 | Medium | Medium |
TP5 | 1.25 | 14 | 12.5 | 10.71 | 17.07 | Poor soil | Low |
TP6 | 1 | 14 | 13.3 | 5 | 15.37 | Medium | Low |
1.50 | 14 | 13.2 | 5.71 | 22.07 | Medium | Medium | |
TP7 | 1.20 | 14 | 12.5 | 10.71 | 14.29 | Poor soil | Low |
TP8 | 1.20 | 14 | 13 | 7.14 | 20.64 | Medium | Medium |
TP9 | 2 | 14 | 13.1 | 6.43 | 21.35 | Medium | Medium |
TP10 | 2 | 14 | 12.4 | 11.43 | 14.11 | Poor | Low |
TP11 | 1 | 14 | 13 | 7.14 | 17.86 | Medium | Low |
TP12 | 3 | 14 | 12.9 | 7.86 | 22.7 | Medium | Medium |
TP13 | 1.20 | 14 | 12.8 | 8.57 | 19.21 | Medium | Low |
TP14 | 2 | 14 | 12.7 | 9.29 | 15.71 | Medium | Low |
TP15 | 2 | 14 | 13 | 7.14 | 17.86 | Medium | Low |
Test Pits | Depth (m) | Initial Volume | Final Volume | Average Final Volume | Free Swell Index (%) | |
Sample No. 1 | Sample No. 2 | |||||
TP1 | 1.50 | 10 | 10 | 14 | 12 | 20 |
TP2 | 1.30 | 10 | 10 | 14 | 12 | 20 |
TP3 | 3 | 10 | 10 | 12.5 | 11.3 | 13 |
TP4 | 1.20 | 10 | 10 | 12 | 11 | 10 |
TP5 | 1.25 | 10 | 10 | 13 | 11.5 | 15 |
TP6 | 1 | 10 | 10 | 13 | 11.5 | 15 |
1.50 | 10 | 10 | 13 | 11.5 | 15 | |
TP7 | 1.20 | 10 | 10 | 13 | 11.5 | 15 |
TP8 | 1.20 | 10 | 10 | 12 | 11 | 10 |
TP9 | 2 | 10 | 10 | 14.5 | 12.3 | 23 |
TP10 | 2 | 10 | 10 | 13 | 11.5 | 15 |
TP11 | 1 | 10 | 10 | 12 | 11 | 10 |
TP12 | 3 | 10 | 10 | 13.5 | 11.8 | 18 |
TP13 | 1.20 | 10 | 10 | 11 | 10.5 | 5 |
TP14 | 2 | 10 | 10 | 12 | 11 | 10 |
TP15 | 2 | 10 | 10 | 13 | 11.5 | 15 |
Test Pits | Sampling Depth (m) | Unconfined Compressive Strength (qu), kPa | Undrained Shear Strength (cu), kPa |
---|---|---|---|
TP1 | 1.50 | 238.9 | 119.5 |
TP3 | 3 | 316.1 | 158 |
TP4 | 1.20 | 333.5 | 166.7 |
TP6 | 1 | 267.6 | 133.8 |
1.50 | 228.8 | 114.4 | |
TP7 | 1.20 | 221.0 | 110.52 |
TP9 | 2 | 215.8 | 107.9 |
TP10 | 2 | 311.6 | 155.8 |
TP12 | 3 | 241.9 | 121 |
TP13 | 1.20 | 296.1 | 148 |
TP15 | 2 | 257.2 | 128.6 |
Test Pits | Depth (m) | Sieve Analysis (%) | Consistency Limits (%) | USCS | |||||
---|---|---|---|---|---|---|---|---|---|
Gravel | Sand | Silt | Clay | LL | PI | Symbol | Soil Name Description | ||
TP1 | 1.50 | 0.00 | 19.98 | 19.91 | 60.11 | 41.48 | 21.45 | CL | Lean clay with sand |
TP2 | 1.30 | 0.00 | 19.14 | 26.94 | 53.92 | 48.28 | 28.64 | CL | Lean clay with sand |
TP3 | 3 | 0.10 | 15.59 | 34.28 | 50.03 | 51.42 | 29.36 | CH | Fat clay with sand |
TP4 | 1.20 | 0.00 | 6.41 | 35.82 | 57.77 | 53.48 | 31.85 | CH | Fat clay |
TP5 | 1.25 | 0.00 | 11.07 | 43.82 | 45.11 | 43.66 | 24.18 | CL | Lean clay |
TP6 | 1 | 1.80 | 21.04 | 38.1 | 39.05 | 41.96 | 17.45 | CL | Lean clay with sand |
1.50 | 11.67 | 26.80 | 26.91 | 34.61 | 45.58 | 27.03 | CL | Lean clay with sand | |
TP7 | 1.20 | 1.45 | 16.69 | 40.42 | 41.43 | 45.28 | 20.77 | CL | Lean clay with sand |
TP8 | 1.20 | 0.40 | 6.01 | 43.88 | 49.71 | 46.29 | 30.04 | CL | Lean clay |
TP9 | 2 | 0.00 | 13.03 | 41.74 | 45.23 | 48.50 | 29.03 | CL | Lean clay |
TP10 | 2 | 0.30 | 12.83 | 43.17 | 43.70 | 54.72 | 29.18 | CH | Fat clay |
TP11 | 1 | 0.10 | 11.77 | 46.33 | 41.80 | 41.11 | 14.02 | ML | Clayey silt with slight plasticity |
TP12 | 3 | 0.20 | 6.97 | 44.12 | 48.71 | 39.97 | 24.50 | CL | Lean clay |
TP13 | 1.20 | 0.50 | 23.10 | 33.24 | 43.16 | 43.53 | 21.91 | CL | Lean clay with sand |
TP14 | 2 | 0.00 | 10.38 | 47.11 | 42.51 | 43.93 | 16.84 | ML | Clayey silt with slight plasticity |
TP15 | 2 | 0.15 | 25.13 | 34.82 | 39.90 | 40.86 | 23.87 | CL | Lean clay with sand |
Test Pits | Depth (m) | Sieve Analysis (%) | Consistency Limits (%) | BSCS | |||||
---|---|---|---|---|---|---|---|---|---|
Gravel | Sand | Silt | Clay | LL | PI | Symbol | Soil Name Description | ||
TP1 | 1.50 | 0.00 | 19.98 | 19.91 | 60.11 | 41.48 | 21.45 | CI | Clay of intermediate plasticity |
TP2 | 1.30 | 0.00 | 19.14 | 26.94 | 53.92 | 48.28 | 28.64 | CI | Clay of intermediate plasticity |
TP3 | 3 | 0.10 | 15.59 | 34.28 | 50.03 | 51.42 | 29.36 | CH | Clay of high plasticity |
TP4 | 1.20 | 0.00 | 6.41 | 35.82 | 57.77 | 53.48 | 31.85 | CH | Clay of high plasticity |
TP5 | 1.25 | 0.00 | 11.07 | 43.82 | 45.11 | 43.66 | 24.18 | CI | Clay of intermediate plasticity |
TP6 | 1 | 1.80 | 21.04 | 38.1 | 39.05 | 41.96 | 17.45 | CI | Clay of intermediate plasticity |
1.50 | 11.67 | 26.80 | 26.91 | 34.61 | 45.58 | 27.03 | CI | Clay of intermediate plasticity | |
TP7 | 1.20 | 1.45 | 16.69 | 40.42 | 41.43 | 45.28 | 20.77 | CI | Clay of intermediate plasticity |
TP8 | 1.20 | 0.40 | 6.01 | 43.88 | 49.71 | 46.29 | 30.04 | CI | Clay of intermediate plasticity |
TP9 | 2 | 0.00 | 13.03 | 41.74 | 45.23 | 48.50 | 29.03 | CI | Clay of intermediate plasticity |
TP10 | 2 | 0.30 | 12.83 | 43.17 | 43.70 | 54.72 | 29.18 | CH | Clay of high plasticity |
TP11 | 1 | 0.10 | 11.77 | 46.33 | 41.80 | 41.11 | 14.02 | MI | Silt of intermediate plasticity |
TP12 | 3 | 0.20 | 6.97 | 44.12 | 48.71 | 39.97 | 24.50 | CI | Clay of intermediate plasticity |
TP13 | 1.20 | 0.50 | 23.10 | 33.24 | 43.16 | 43.53 | 21.91 | CI | Clay of intermediate plasticity |
TP14 | 2 | 0.00 | 10.38 | 47.11 | 42.51 | 43.93 | 16.84 | MI | Silt of intermediate plasticity |
TP15 | 2 | 0.15 | 25.13 | 34.82 | 39.90 | 40.86 | 23.87 | CI | Clay of intermediate plasticity |
Location (UTM, N and E with Elev.) | Lithology | Average SHV | Average UCS (MPa) | Qualitative Strength Based on Reference [27] |
0361887, 0759145 E 2031 m | Slightly weathered ignimbrite | 33.6 | 40.25 | Medium strength |
0361493, 0758930 E 2045 m | Fresh ignimbrite | 42.5 | 68.64 | High strength |
0361406, 0758919 E 2046 m | Slightly weathered ignimbrite | 31.7 | 35.26 | Medium strength |
0361403, 0758909 E 2039 m | Fresh ignimbrite | 42.7 | 69.38 | High strength |
0361602, 0758976 E 2052 m | Completely weathered ignimbrite | 10.9 | 3.12 | Very low strength |
0362727, 0757181 E 2017 m | Highly weathered ignimbrite | 11.7 | 3.66 | Very low strength |
0362728, 0757176 E 2016 m | Completely weathered ignimbrite | 10.5 | 2.86 | Very low strength |
0362725, 0757183 E 2019 m | Highly weathered ignimbrite | 11.5 | 3.52 | Very low strength |
0362663, 0757120 E 2007 m | Highly weathered ignimbrite | 13.3 | 4.9 | Very low strength |
0362717, 0757127 E 2011 m | Moderately weathered ignimbrite | 16.6 | 8.11 | Low strength |
0363814, 0755668 E 1883 m | Slightly weathered ignimbrite | 33.0 | 38.63 | Medium strength |
0363814, 0755656 E 1879 m | Fresh ignimbrite | 39.6 | 58.46 | High strength |
0363801, 0755683 E 1891 m | slightly weathered ignimbrite | 33.0 | 38.63 | Medium strength |
0363800, 0759465 E 2137 m | Highly weathered ignimbrite | 11.1 | 3.25 | Very low strength |
0363882, 0755875 E 1901 | Highly weathered ignimbrite | 13 | 4.65 | Very low strength |
0364291, 0759575 E 2114 | Slightly weathered ignimbrite | 29.8 | 30.64 | Medium strength |
0364304, 0759510 E 2112 | Slightly weathered ignimbrite | 34.3 | 42.18 | Medium strength |
0364429, 0759415 E 2097 | Fresh ignimbrite | 41.7 | 65.74 | High strength |
Scanline Data | ||||
Scanline Number | Lithology | Location: UTM (Northing and Easting) | Length (m) | No of Discontinuity |
1 | Slightly weathered ignimbrite | 0361406, 0758919 | 5 | 4 |
2 | Fresh ignimbrite | 0361403, 0758909 | 4 | 2 |
3 | Highly weathered ignimbrite | 0362727, 0757181 | 18 | 30 |
4 | Completely weathered ignimbrite | 0362728, 0757176 | 21 | 37 |
5 | Highly weathered ignimbrite | 0362725, 0757183 | 7 | 9 |
6 | Moderately weathered ignimbrite | 0362717, 0757127 | 6 | 7 |
7 | Slightly weathered ignimbrite | 0363814, 0755668 | 11 | 9 |
8 | Slightly weathered ignimbrite | 0363801, 0755683 | 13 | 11 |
9 | Highly weathered ignimbrite | 0363800, 0759465 | 30 | 36 |
10 | Slightly weathered ignimbrite | 0361887, 0759145 | 5 | 5 |
11 | Fresh ignimbrite | 0363814, 0755656 | 12 | 5 |
12 | Highly weathered ignimbrite | 0363882, 0755875 | 4 | 19 |
13 | Slightly weathered ignimbrite | 0364291, 0759575 | 15 | 12 |
14 | Slightly weathered ignimbrite | 0364304, 0759510 | 10 | 9 |
15 | Fresh ignimbrite | 0364429, 0759415 | 10 | 2 |
16 | Highly weathered ignimbrite | 0362663, 0757120 | 5 | 27 |
Scanline Number | Lithology | Fracture Frequency, λ (m−1) | Mean Spacing (m) | RQD (%) | Quality |
1 | Slightly weathered ignimbrite | 0.8 | 1.25 | 80.88 | Good |
2 | Fresh ignimbrite | 0.5 | 2 | 90.98 | Excellent |
3 | Highly weathered ignimbrite | 1.67 | 0.59 | 50.26 | Fair |
4 | Completely weathered ignimbrite | 1.76 | 0.57 | 47.48 | Poor |
5 | Highly weathered ignimbrite | 1.29 | 0.78 | 63.04 | Fair |
6 | Moderately weathered ignimbrite | 1.17 | 0.85 | 67.35 | Fair |
7 | Slightly weathered ignimbrite | 0.82 | 1.22 | 80.16 | Good |
8 | Slightly weathered ignimbrite | 0.85 | 1.18 | 79.07 | Good |
9 | Highly weathered ignimbrite | 1.2 | 0.83 | 66.26 | Fair |
10 | Slightly weathered ignimbrite | 1 | 1 | 73.58 | Fair |
11 | Fresh ignimbrite | 0.42 | 2.38 | 93.3 | Excellent |
12 | Highly weathered ignimbrite | 4.75 | 0.21 | 58.15 | Fair |
13 | Slightly weathered ignimbrite | 0.8 | 1.25 | 80.88 | Good |
14 | Slightly weathered ignimbrite | 0.9 | 1.11 | 77.25 | Good |
15 | Fresh ignimbrite | 0.2 | 5 | 98.25 | Excellent |
16 | Highly weathered ignimbrite | 5.4 | 0.19 | 51.85 | Fair |
Lithology | UCS (Mpa) | RQD % | Joint Condition | Joint Spacing (m) | Groundwater Situation | RMRbasic | Class | Quality |
Rating Value of Each Parameter | ||||||||
Slightly weathered ignimbrite | 4 | 17 | 24 | 15 | 15 | 75 | II | Good |
Fresh ignimbrite | 7 | 20 | 29 | 15 | 10 | 81 | I | Very good |
Highly weathered ignimbrite | 1 | 13 | 12 | 10 | 15 | 51 | III | Fair |
Completely weathered ignimbrite | 1 | 8 | 15 | 10 | 10 | 44 | III | Fair |
Highly weathered ignimbrite | 1 | 13 | 12 | 15 | 7 | 48 | III | Fair |
Moderately weathered ignimbrite | 2 | 13 | 19 | 15 | 15 | 64 | II | Good |
Slightly weathered ignimbrite | 4 | 17 | 22 | 15 | 15 | 73 | II | Good |
Slightly weathered ignimbrite | 4 | 17 | 26 | 15 | 15 | 77 | II | Good |
Highly weathered ignimbrite | 1 | 13 | 18 | 10 | 10 | 52 | III | Fair |
Slightly weathered ignimbrite | 4 | 13 | 25 | 15 | 15 | 72 | II | Good |
fresh ignimbrite | 7 | 20 | 27 | 20 | 15 | 89 | I | Very good |
Highly weathered ignimbrite | 1 | 13 | 16 | 10 | 15 | 55 | III | Fair |
Slightly weathered ignimbrite | 4 | 17 | 22 | 15 | 7 | 65 | II | Good |
Slightly weathered ignimbrite | 4 | 17 | 20 | 15 | 15 | 71 | II | Good |
Fresh ignimbrite | 7 | 20 | 28 | 20 | 15 | 90 | I | Very good |
Highly weathered ignimbrite | 1 | 13 | 14 | 10 | 15 | 53 | III | Fair |
BH No. 1 | BH No. 2 | BH No. 3 | BH No. 4 | ||||
Location | LOCATION | LOCATION | LOCATION | ||||
N 0757902 | N 0757722 | N 0755320 | N 0754559 | ||||
E 0362336 | E 0364216 | E 0361868 | E 0361575 | ||||
E = 2046 m | E = 1964 m | E = 1877 m | E = 1855 m | ||||
SWL = 102.20 m | SWL = 93.60 m | SWL = 50.90 m | SWL = 33.11 m | ||||
WTE = 1943.8 m | WTE = 1870.4 m | WTE =1826.1 m | WTE = 1821.89 m | ||||
Depth (m) | Lithology | Depth (m) | Lithology | Depth (m) | Lithology | Depth (m) | Lithology |
0–27 | Red clay | 0–42 | Ignimbrite | 0–8 | Clay | 0–8 | Ash |
27–50 | Ignimbrite | 42–48 | Weathered ignimbrite | 8–17 | Highly weathered & fractured ignimbrite | 8–20 | Slightly Weathered Ignimbrite |
50–74 | Tuff | 48–85 | Ignimbrite | 17–23 | Highly weathered ignimbrite | 20–62 | Fresh Ignimbrite |
74–92 | Red clay | 85–103 | Sand with clay | 23–35 | Slightly fractured ignimbrite | 62–82 | Highly Weathered Ignimbrite |
92–134 | Ash | 103–109 | Red clay | 35–62 | Highly welded ignimbrite | 82–88 | Clay |
134–140 | Ash With Sand | 109–121 | Highly weathered ignimbrite | 62–65 | Slightly weathered & fractured ignimbrite | 88–94 | Fractured ignimbrite |
140–164 | Tuff | 121–127 | Weathered ignimbrite | 65–68 | Sand | 94–97 | Pumice |
164–167 | Silt | 127–139 | Ignimbrite | 68–75 | Slightly weathered ignimbrite | 97–136 | Tuff |
167–185 | Tuff | 139–145 | Sandy clay | 75–84 | Highly welded ignimbrite | ||
185–188 | Ignimbrite | 145–169 | Sand | 84–87 | Highly fractured ignimbrite | ||
188–194 | Sand | 87–114 | Highly weathered ignimbrite | ||||
194–202 | Alluvial deposit | 114–126 | Sand | ||||
202–205 | Fractured ignimbrite | 126–137 | Highly weathered ignimbrite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadese, A.; Getahun, E.; Jothimani, M.; Demisie, T.; Ayalew, A. Engineering Geological Characterization of Soils and Rocks for Urban Planning: A Case Study from Wolaita Sodo Town, Southern Ethiopia. Eng 2025, 6, 124. https://doi.org/10.3390/eng6060124
Tadese A, Getahun E, Jothimani M, Demisie T, Ayalew A. Engineering Geological Characterization of Soils and Rocks for Urban Planning: A Case Study from Wolaita Sodo Town, Southern Ethiopia. Eng. 2025; 6(6):124. https://doi.org/10.3390/eng6060124
Chicago/Turabian StyleTadese, Alemu, Ephrem Getahun, Muralitharan Jothimani, Tadesse Demisie, and Amanuel Ayalew. 2025. "Engineering Geological Characterization of Soils and Rocks for Urban Planning: A Case Study from Wolaita Sodo Town, Southern Ethiopia" Eng 6, no. 6: 124. https://doi.org/10.3390/eng6060124
APA StyleTadese, A., Getahun, E., Jothimani, M., Demisie, T., & Ayalew, A. (2025). Engineering Geological Characterization of Soils and Rocks for Urban Planning: A Case Study from Wolaita Sodo Town, Southern Ethiopia. Eng, 6(6), 124. https://doi.org/10.3390/eng6060124