A Systematic Review of Intelligent Navigation in Smart Warehouses Using Prisma: Integrating AI, SLAM, and Sensor Fusion for Mobile Robots
Abstract
1. Introduction
- Population: smart warehouses utilizing mobile robots (AMRs/AGVs),
- Intervention/Exposure: integration of AI, SLAM, sensor fusion, IoT, reinforcement learning, semantic mapping,
- Comparator: traditional warehouses or non-integrated robotic systems (where re-ported),
- Outcomes: navigation accuracy, operational cost reduction, safety improvements, implementation challenges and
- Study designs: peer-reviewed primary research, technical papers, and reviews published in English (2020–2025).
2. Database Search Methods: Web of Science Core Collection, IEEE Xplore, and Scopus
2.1. Identification
2.2. Screening
2.3. Eligibility
2.4. Included
2.5. Data Extraction
2.6. Data Synthesis
- Rayyan (https://rayyan.ai, accessed on 2 November 2025) for title/abstract screening,
- Microsoft Excel for data extraction and management,
- VOSviewer v1.6.20 for co-occurrence analysis,
- PRISMA Flow Diagram Generator (http://prisma-statement.org, accessed on 2 November 2025) for Figure 1 and Figure 2.
2.7. Bibliometric Analysis
3. Analysis of Search Results from the Database
3.1. Literature Review
3.2. Design/Model
3.3. Improving Knowledge
3.4. Implementation
3.5. Method
3.6. Network
3.7. Safety
3.8. Uncategorized
- ➢
- Most used simulation software for swarm robotics [22];
- ➢
- Advanced mobility applications for robotic wheelchairs with designs focused on technological adaptations [91];
- ➢
- The evolution of robotic technologies for operation in wooded areas [60];
- ➢
- Applications of agricultural robotic systems for the execution of land preparation [92];
- ➢
- Research concerning the primary packaging of proteins and peptides, as well as the formulation and development of drug product manufacturing processes [93];
- ➢
- Pigment bioprocessing operation costs [94];
- ➢
- Recurrent averaging inequalities in multi-agent control and social dynamics modeling [95];
- ➢
- Thermochemical transformation of biomass into biochar and its decoration with CO(2) methanation catalysts [96];
- ➢
- Exploring multi-use platforms- marine, with applications (M4s) [97];
- ➢
- Solar greenhouse is an agricultural facility in alpine regions [98];
- ➢
- The employment of UAVs in particular tasks in the electrical sector [99];
- ➢
- The integration of carbon dioxide capture and conversion by means of metal oxides [100];
- ➢
- Techno-Energetic, Economic and Environmental Performance for Remote Power Generation [101];
- ➢
- Green building technologies for identifying the future roadmap [102];
- ➢
- Development for Oil and Gas Infrastructure [103];
- ➢
- astewater Treatment Using Membrane Bioreactor Technologies [104];
- ➢
- Wind energy’s role in sustainable development goals [105];
- ➢
- Dam and powerhouse operation sustainability with reduce of hydropower [106];
- ➢
- The importance of fossil fuels, predominantly coal, in the worldwide energy structure [107];
- ➢
- Optimization systems optimally operate with power systems [108];
- ➢
- Microbial fuel cells and microbial desalination cells represent a novel approach owing to their capacity to process wastewater [109];
- ➢
- Formulating sustainable strategies associated with the deployment of solar photovoltaic (PV) and concentrated solar power (CSP) systems [38];
- ➢
- Chemical mechanical polishing and post-CMP cleaning [110];
- ➢
- The efficient treatment of olive mill wastewater (OMW) with SR-AOPs [111];
- ➢
- Overview of the Rh metal recovery from spent catalysts [112];
- ➢
- Improved waste management for the production of FeCr [113];
4. Main Research Gaps and Future Considerations
4.1. Analysis of the Obtained Results
4.2. Identification of the Research Gap
4.3. State-of-the-Art Technologies That Could Narrow Research Gaps
4.4. Summary of the Discussion
- An overview of examination of existing literature was conducted.Section 4.1 introduces a collection of review articles concerning smart warehouses utilizzing mobile robots and AGVs. Most of the articles reviewed presented results that focused on specific research problems, such as path planning, and the application of specific technological solutions (SLAM, IoT, VR, AI, ML and neural networks). In these reviews, smart warehouses and mobile robots appeared as elements of a research area due to the complexity of problem solving, which requires the integration of multiple factors.
- Identification of two research deficiencies in the reviewed literature analysis:A critical analysis of examination of existing literature has identified two research gaps. The first relates to the safety of human operators due to a lack of accuracy, and the second relates to the network, which is directly connected to poor navigation of mobile robots and indirectly connected to human safety. To avoid these problems in smart warehouses, robots need to be equipped with sensors for early warnings and UWB technology needs to be installed.
4.5. Limitations
- database restriction—reliance on Web of Science may have missed relevant studies in some other relevant databases,
- language bias—inclusion of only English-language reviews excludes potentially valuable non-English literature,
- quality variability—many included studies were technical papers with limited validation or reviews with methodological weaknesses,
- no meta-analysis—quantitative synthesis was not feasible due to heterogeneity in out-come reporting,
- rapidly evolving field—reviews from 2020–2023 may not reflect the latest advances in 2024–2025.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhen, L.; Li, H. A Literature Review of Smart Warehouse Operations Management. Front. Eng. Manag. 2022, 9, 31–55. [Google Scholar] [CrossRef]
- Kamali, D.A. Smart Warehouse vs. Traditional Warehouse—Review. Autom. Auton. Syst. 2019, 11, 9–16. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Yang, Y.; Jiang, S. CPS-Based Smart Warehouse for Industry 4.0: A Survey of the Underlying Technologies. Computers 2018, 7, 13. [Google Scholar] [CrossRef]
- Zunic, E.; Delalić, S.; Hodžić, K.; Beširević, A.; Hindija, H. Smart Warehouse Management System Concept with Implementation. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20–21 November 2018; p. 5. [Google Scholar]
- Bashir, M. An Improved Method of Particle Swarm Optimization for Path Planning of Mobile Robot. J. Control. Sci. Eng. 2020, 2020, 3857894. [Google Scholar] [CrossRef]
- Affia, I.; Aamer, A. An Internet of Things-Based Smart Warehouse Infrastructure: Design and Application. J. Sci. Technol. Policy Manag. 2021, 13, 90–109. [Google Scholar] [CrossRef]
- Fernando, Y.; Suhaini, A.; Tseng, M.L.; Abideen, A.Z.; Shaharudin, M.S. A Smart Warehouse Framework, Architecture and System Aspects under Industry 4.0: A Bibliometric Networks Visualisation and Analysis. Int. J. Logist. Res. Appl. 2024, 27, 2688–2711. [Google Scholar] [CrossRef]
- Hung, B.M.; You, S.-S.; Phuc, B.D.H.; Kim, H.-S. Motion Control with Robust String Stability of Mobile-Rack Vehicles in Autonomous Logistics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 2347–2359. [Google Scholar] [CrossRef]
- Żuchowski, W. The Smart Warehouse Trend: Actual Level of Technology Availability. Logforum 2022, 18, 227–235. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, C.; Cao, Z. Reinforcement-Learning-Based Local Search Approach to Integrated Order Batching: Driving Growth for Logistics and Retail. IEEE Robot. Autom. Mag. 2023, 30, 34–45. [Google Scholar] [CrossRef]
- Yang, Q.; Lian, Y.; Liu, Y.; Xie, W.; Yang, Y. Multi-AGV Tracking System Based on Global Vision and AprilTag in Smart Warehouse. J. Intell. Robot. Syst. 2022, 104, 42. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R.; Gupta, H.; Ahmad, Z.; Jebahi, K. A decision-making framework for determinants of an organisation’s readiness for smart warehouse. Prod. Plan. Control 2024, 35, 1887–1908. [Google Scholar] [CrossRef]
- Wurman, P.R.; D’Andrea, R.; Mountz, M. Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Mag. 2008, 29, 9. [Google Scholar] [CrossRef]
- Benavides-Robles, M.T.; Valencia-Rivera, G.H.; Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C. Robotic Mobile Fulfillment System: A Systematic Review. IEEE Access 2024, 12, 16767–16782. Available online: https://ieeexplore.ieee.org/abstract/document/10415441 (accessed on 22 October 2025). [CrossRef]
- Boysen, N.; de Koster, R.; Weidinger, F. Warehousing in the E-Commerce Era: A Survey. Eur. J. Oper. Res. 2019, 277, 396–411. [Google Scholar] [CrossRef]
- Banker, S. Robots In The Warehouse: It’s Not Just Amazon. Available online: https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-amazon/ (accessed on 22 October 2025).
- Merschformann, M.; Lamballais, T.; de Koster, M.B.M.; Suhl, L. Decision Rules for Robotic Mobile Fulfillment Systems. Oper. Res. Perspect. 2019, 6, 100128. [Google Scholar] [CrossRef]
- Arents, J.; Abolins, V.; Judvaitis, J.; Vismanis, O.; Oraby, A.; Ozols, K. Human–Robot Collaboration Trends and Safety Aspects: A Systematic Review. J. Sens. Actuator Netw. 2021, 10, 48. [Google Scholar] [CrossRef]
- Lasota, P.A.; Fong, T.; Shah, J.A. A Survey of Methods for Safe Human-Robot Interaction. Found. Trends® Robot. 2017, 5, 261–349. [Google Scholar] [CrossRef]
- ISO 10218-1:2023; Robots and Robotic Devices—Safety Requirements—Part 1: Industrial Robots. ISO: Geneva, Switzerland, 2023.
- ISO 10218-2:2023; Robots and Robotic Devices—Safety Requirements—Part 2: Robot Systems and Integration. ISO: Geneva, Switzerland, 2023.
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence--Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Davis, J.; Mengersen, K.; Bennett, S.; Mazerolle, L. Viewing Systematic Reviews and Meta-Analysis in Social Research through Different Lenses. SpringerPlus 2014, 3, 511. [Google Scholar] [CrossRef]
- Kable, A.K.; Pich, J.; Maslin-Prothero, S.E. A Structured Approach to Documenting a Search Strategy for Publication: A 12 Step Guideline for Authors. Nurse Educ. Today 2012, 32, 878–886. [Google Scholar] [CrossRef]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Carter, C.R.; Liane Easton, P. Sustainable Supply Chain Management: Evolution and Future Directions. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 46–62. [Google Scholar] [CrossRef]
- Gareis, M.; Hehn, M.; Stief, P.; Körner, G.; Birkenhauer, C.; Trabert, J.; Mehner, T.; Vossiek, M.; Carlowitz, C. Novel UHF-RFID Listener Hardware Architecture and System Concept for a Mobile Robot Based MIMO SAR RFID Localization. IEEE Access 2021, 9, 497–510. [Google Scholar] [CrossRef]
- Murphy, R.R.; Gandudi, V.B.M.; Adams, J. Applications of Robots for COVID-19 Response 2020. arXiv 2020, arXiv:2008.06976. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tiozzo Fasiolo, D.; Scalera, L.; Maset, E.; Gasparetto, A. Towards Autonomous Mapping in Agriculture: A Review of Supportive Technologies for Ground Robotics. Robot. Auton. Syst. 2023, 169, 104514. [Google Scholar] [CrossRef]
- Zhang, C.; Cen, C.; Huang, J. An Overview of Model-Free Adaptive Control for the Wheeled Mobile Robot. World Electr. Veh. J. 2024, 15, 396. [Google Scholar] [CrossRef]
- Yang, L.; Li, P.; Qian, S.; Quan, H.; Miao, J.; Liu, M.; Hu, Y.; Memetimin, E. Path Planning Technique for Mobile Robots: A Review. Machines 2023, 11, 980. [Google Scholar] [CrossRef]
- Raj, R.; Kos, A. A Comprehensive Study of Mobile Robot: History, Developments, Applications, and Future Research Perspectives. Appl. Sci. 2022, 12, 6951. [Google Scholar] [CrossRef]
- Wang, S.; Ahmad, N.S. AI-Based Approaches for Improving Autonomous Mobile Robot Localization in Indoor Environments: A Comprehensive Review. Eng. Sci. Technol. Int. J. 2025, 63, 101977. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Zeng, C.; Jiang, Y.; Qi, W.; Xiang, K.; Pang, M.; Tang, B. Robotics Perception and Control: Key Technologies and Applications. Micromachines 2024, 15, 531. [Google Scholar] [CrossRef]
- Liang, C.-J.; Le, T.-H.; Ham, Y.; Mantha, B.R.K.; Cheng, M.H.; Lin, J.J. Ethics of Artificial Intelligence and Robotics in the Architecture, Engineering, and Construction Industry. Autom. Constr. 2024, 162, 105369. [Google Scholar] [CrossRef]
- Lai, T. A Review on Visual-SLAM: Advancements from Geometric Modelling to Learning-Based Semantic Scene Understanding Using Multi-Modal Sensor Fusion. Sensors 2022, 22, 7265. [Google Scholar] [CrossRef]
- Wakchaure, M.; Patle, B.K.; Mahindrakar, A.K. Application of AI Techniques and Robotics in Agriculture: A Review. Artif. Intell. Life Sci. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Bujňák, M.; Pirník, R.; Rástočný, K.; Janota, A.; Nemec, D.; Kuchár, P.; Tichý, T.; Łukasik, Z. Spherical Robots for Special Purposes: A Review on Current Possibilities. Sensors 2022, 22, 1413. [Google Scholar] [CrossRef]
- Altuntas, C. Review of Scanning and Pixel Array-Based LiDAR Point-Cloud Measurement Techniques to Capture 3D Shape or Motion. Appl. Sci. 2023, 13, 6488. [Google Scholar] [CrossRef]
- Singh, R.; Ren, J.; Lin, X. A Review of Deep Reinforcement Learning Algorithms for Mobile Robot Path Planning. Vehicles 2023, 5, 1423–1451. [Google Scholar] [CrossRef]
- Wang, J.; Lin, S.; Liu, A. Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review. Biomimetics 2023, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, H.; Wang, X.; Li, J.; Wang, P.; Liu, S.; Zou, J.; Yang, X. Application of Path Planning and Tracking Control Technology in Mower Robots. Agronomy 2024, 14, 2473. [Google Scholar] [CrossRef]
- Chakraborty, S.; Elangovan, D.; Govindarajan, P.L.; ELnaggar, M.F.; Alrashed, M.M.; Kamel, S. A Comprehensive Review of Path Planning for Agricultural Ground Robots. Sustainability 2022, 14, 9156. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, C.; Shang, G.; Wang, X.; Li, Z.; Xu, C.; Hu, K. SLAM Overview: From Single Sensor to Heterogeneous Fusion. Remote Sens. 2022, 14, 6033. [Google Scholar] [CrossRef]
- Panigrahi, P.K.; Bisoy, S.K. Localization Strategies for Autonomous Mobile Robots: A Review. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6019–6039. [Google Scholar] [CrossRef]
- Fang, Y.; Panah, A.; Masoudi, J.; Barzegar, B.; Fatehi, S. Adaptive Unscented Kalman Filter for Robot Navigation Problem (Adaptive Unscented Kalman Filter Using Incorporating Intuitionistic Fuzzy Logic for Concurrent Localization and Mapping). IEEE Access 2022, 10, 101869–101879. [Google Scholar] [CrossRef]
- Abaspur Kazerouni, I.; Fitzgerald, L.; Dooly, G.; Toal, D. A Survey of State-of-the-Art on Visual SLAM. Expert Syst. Appl. 2022, 205, 117734. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Gao, S.; Shang, G.; Zhou, C.; Li, Z.; Xu, C.; Hu, K. Overview of Multi-Robot Collaborative SLAM from the Perspective of Data Fusion. Machines 2023, 11, 653. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Yang, Q.; Yan, B.; Yang, X. A Review of Underwater Robot Localization in Confined Spaces. J. Mar. Sci. Eng. 2024, 12, 428. [Google Scholar] [CrossRef]
- Ušinskis, V.; Nowicki, M.; Dzedzickis, A.; Bučinskas, V. Sensor-Fusion Based Navigation for Autonomous Mobile Robot. Sensors 2025, 25, 1248. [Google Scholar] [CrossRef]
- Jusoh, S.; Almajali, S. A Systematic Review on Fusion Techniques and Approaches Used in Applications. IEEE Access 2020, 8, 14424–14439. [Google Scholar] [CrossRef]
- Taraglio, S.; Chiesa, S.; De Vito, S.; Paoloni, M.; Piantadosi, G.; Zanela, A.; Di Francia, G. Robots for the Energy Transition: A Review. Processes 2024, 12, 1982. [Google Scholar] [CrossRef]
- Badrloo, S.; Varshosaz, M.; Pirasteh, S.; Li, J. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review. Remote Sens. 2022, 14, 3824. [Google Scholar] [CrossRef]
- Leggieri, S.; Canali, C.; Caldwell, D.G. Design, Modeling, and Experimental Analysis of the Crawler Unit for Inspection in Constrained Space. Annu. Rev. Control. 2024, 57, 100950. [Google Scholar] [CrossRef]
- Shatokhin, O.; Dzedzickis, A.; Pečiulienė, M.; Bučinskas, V. Extended Reality: Types and Applications. Appl. Sci. 2025, 15, 3282. [Google Scholar] [CrossRef]
- Lewis, T.; Bhaganagar, K. A Comprehensive Review of Plume Source Detection Using Unmanned Vehicles for Environmental Sensing. Sci. Total Environ. 2021, 762, 144029. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [Google Scholar] [CrossRef]
- ISO/TS 15066:2016; Robots and Robotic Devices—Collaborative Robots. ISO: Geneva, Switzerland, 2016.
- Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and Control of Autonomous Mobile Robots for Intralogistics: Literature Review and Research Agenda. Eur. J. Oper. Res. 2021, 94, 405–426. [Google Scholar] [CrossRef]
- Oyekanlu, E.A.; Smith, A.C.; Thomas, W.P.; Mulroy, G.; Hitesh, D.; Ramsey, M.; Kuhn, D.J.; Mcghinnis, J.D.; Buonavita, S.C.; Looper, N.A.; et al. A Review of Recent Advances in Automated Guided Vehicle Technologies: Integration Challenges and Research Areas for 5G-Based Smart Manufacturing Applications. IEEE Access 2020, 8, 202312–202353. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, W.; Yu, R.; Zhang, Y. Motion planning for mobile robots—Focusing on deep reinforcement learning: A systematic review. IEEE Access 2021, 9, 69061–69081. Available online: https://ieeexplore.ieee.org/document/9419029 (accessed on 23 October 2025). [CrossRef]
- Rybczak, M.; Popowniak, N.; Lazarowska, A. A Survey of Machine Learning Approaches for Mobile Robot Control. Robotics 2024, 13, 12. [Google Scholar] [CrossRef]
- Han, X.; Guffanti, D.; Brunete, A. A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis. Sensors 2025, 25, 498. [Google Scholar] [CrossRef]
- Almazrouei, K.; Kamel, I.; Rabie, T. Dynamic Obstacle Avoidance and Path Planning through Reinforcement Learning. Appl. Sci. 2023, 13, 8174. [Google Scholar] [CrossRef]
- Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, 7, 211. [Google Scholar] [CrossRef]
- Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms. IEEE Access 2021, 9, 119310–119342. [Google Scholar] [CrossRef]
- Loganathan, A.; Ahmad, N.S. A Systematic Review on Recent Advances in Autonomous Mobile Robot Navigation. Eng. Sci. Technol. Int. J. 2023, 40, 101343. [Google Scholar] [CrossRef]
- Tang, Y.; Zakaria, M.A.; Younas, M. Path Planning Trends for Autonomous Mobile Robot Navigation: A Review. Sensors 2025, 25, 1206. [Google Scholar] [CrossRef]
- Abdulsaheb, J.A.; Kadhim, D.J. Classical and Heuristic Approaches for Mobile Robot Path Planning: A Survey. Robotics 2023, 12, 93. [Google Scholar] [CrossRef]
- Achour, A.; Al-Assaad, H.; Dupuis, Y.; El Zaher, M. Collaborative Mobile Robotics for Semantic Mapping: A Survey. Appl. Sci. 2022, 12, 10316. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, C.; Zhang, T. Agricultural Machinery Automatic Navigation Technology. iScience 2024, 27, 108714. [Google Scholar] [CrossRef]
- Han, X.; Li, S.; Wang, X.; Zhou, W. Semantic Mapping for Mobile Robots in Indoor Scenes: A Survey. Information 2021, 12, 92. [Google Scholar] [CrossRef]
- Sánchez-Molina, J.A.; Rodríguez, F.; Moreno, J.C.; Sánchez-Hermosilla, J.; Giménez, A. Robotics in Greenhouses. Scoping Review. Comput. Electron. Agric. 2024, 219, 108750. [Google Scholar] [CrossRef]
- Sagar, M.M.; Konara, M.; Picard, N.; Park, K. State-of-the-Art Navigation Systems and Sensors for Unmanned Underwater Vehicles (UUVs). Appl. Mech. 2025, 6, 10. [Google Scholar] [CrossRef]
- Raj, R.; Kos, A. An Extensive Study of Convolutional Neural Networks: Applications in Computer Vision for Improved Robotics Perceptions. Sensors 2025, 25, 1033. [Google Scholar] [CrossRef]
- Bavle, H.; Sanchez-Lopez, J.L.; Cimarelli, C.; Tourani, A.; Voos, H. From SLAM to Situational Awareness: Challenges and Survey. Sensors 2023, 23, 4849. [Google Scholar] [CrossRef]
- Bruzzone, L.; Nodehi, S.E.; Fanghella, P. Tracked Locomotion Systems for Ground Mobile Robots: A Review. Machines 2022, 10, 648. [Google Scholar] [CrossRef]
- Pappalettera, A.; Bottiglione, F.; Mantriota, G.; Reina, G. Watch the Next Step: A Comprehensive Survey of Stair-Climbing Vehicles. Robotics 2023, 12, 74. [Google Scholar] [CrossRef]
- Seo, T.; Ryu, S.; Won, J.H.; Kim, Y.; Kim, H.S. Stair-Climbing Robots: A Review on Mechanism, Sensing, and Performance Evaluation. IEEE Access 2023, 11, 60539–60561. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Chang, C.-Y.; Hsiao, Y.-K.; Chen, C.-C.A.; Tu, C.-C.; Kuo, H.-C. Recent Advances In Silicon Carbide Chemical Mechanical Polishing Technologies. Micromachines 2022, 13, 1752. [Google Scholar] [CrossRef]
- Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Forest Robotics: A State-of-the-Art Survey. Robotics 2021, 10, 53. [Google Scholar] [CrossRef]
- Gonzalez-de-Santos, P.; Fernández, R.; Sepúlveda, D.; Navas, E.; Emmi, L.; Armada, M. Field Robots for Intelligent Farms—Inhering Features from Industry. Agronomy 2020, 10, 1638. [Google Scholar] [CrossRef]
- Kolar, P.; Benavidez, P.; Jamshidi, M. Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for Autonomous Navigation. Sensors 2020, 20, 2180. [Google Scholar] [CrossRef]
- Romero, L.M.; Guerrero, J.A.; Romero, G. Road Curb Detection: A Historical Survey. Sensors 2021, 21, 6952. [Google Scholar] [CrossRef]
- Lluvia, I.; Lazkano, E.; Ansuategi, A. Active Mapping and Robot Exploration: A Survey. Sensors 2021, 21, 2445. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Chen, T.; He, J.; Wang, Z.; Gao, B. Review on Security Range Perception Methods and Path-Planning Techniques for Substation Mobile Robots. Energies 2024, 17, 4106. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Jiang, D. Order-Picking Efficiency in E-Commerce Warehouses: A Literature Review. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1812–1830. [Google Scholar] [CrossRef]
- Le, N.; Tran, D.; Sturgill, R. Content Analysis of Three-Dimensional Model Technologies and Applications for Construction: Current Trends and Future Directions. Sensors 2024, 24, 3838. [Google Scholar] [CrossRef]
- Ušinskis, V.; Makulavičius, M.; Petkevičius, S.; Dzedzickis, A.; Bučinskas, V. Towards Autonomous Driving: Technologies and Data for Vehicles-to-Everything Communication. Sensors 2024, 24, 3411. [Google Scholar] [CrossRef]
- Katona, K.; Neamah, H.A.; Korondi, P. Obstacle Avoidance and Path Planning Methods for Autonomous Navigation of Mobile Robot. Sensors 2024, 24, 3573. [Google Scholar] [CrossRef]
- Al-Okby, M.F.R.; Junginger, S.; Roddelkopf, T.; Thurow, K. UWB-based real-time indoor positioning systems: A comprehensive review. Appl. Sci. 2024, 14, 11005. Available online: https://www.mdpi.com/2076-3417/14/23/11005 (accessed on 23 October 2025). [CrossRef]
- Sivakanthan, S.; Candiotti, J.L.; Sundaram, S.A.; Duvall, J.A.; Sergeant, J.J.G.; Cooper, R.; Satpute, S.; Turner, R.L.; Cooper, R.A. Mini-Review: Robotic Wheelchair Taxonomy and Readiness. Neurosci. Lett. 2022, 772, 136482. [Google Scholar] [CrossRef]
- Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Migoń, D.; Wasilewski, T.; Suchy, D. Application of QCM in Peptide and Protein-Based Drug Product Development. Molecules 2020, 25, 3950. [Google Scholar] [CrossRef]
- Pagels, F.; Pereira, R.N.; Vicente, A.A.; Guedes, A.C. Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. Appl. Sci. 2021, 11, 5187. [Google Scholar] [CrossRef]
- Proskurnikov, A.V.; Calafiore, G.C.; Cao, M. Recurrent Averaging Inequalities in Multi-Agent Control and Social Dynamics Modeling. Annu. Rev. Control. 2020, 49, 95–112. [Google Scholar] [CrossRef]
- Tang, M.; Gamal, A.; Bhakta, A.K.; Jlassi, K.; Abdullah, A.M.; Chehimi, M.M. Carbon Dioxide Methanation Enabled by Biochar-Nanocatalyst Composite Materials: A Mini-Review. Catalysts 2024, 14, 155. [Google Scholar] [CrossRef]
- Xylia, M.; Passos, M.V.; Piseddu, T.; Barquet, K. Exploring Multi-Use Platforms: A Literature Review of Marine, Multifunctional, Modular, and Mobile Applications (M4s). Heliyon 2023, 9, e16372. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fang, H.; Zhang, Y.; Li, K.; Xu, D. Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review. Energies 2023, 16, 6816. [Google Scholar] [CrossRef]
- Sánchez-Zuluaga, G.J.; Isaza-Giraldo, L.; Zapata-Madrigal, G.D.; García-Sierra, R.; Candelo-Becerra, J.E. Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context. Appl. Sci. 2023, 13, 1801. [Google Scholar] [CrossRef]
- Tan, W.J.; Gunawan, P. Integration of CO2 Capture and Conversion by Employing Metal Oxides as Dual Function Materials: Recent Development and Future Outlook. Inorganics 2023, 11, 464. [Google Scholar] [CrossRef]
- Da Lio, L.; Lazzaretto, A. Remote Power Generation for Applications to Natural Gas Grid: A Comprehensive Market Review of Techno-Energetic, Economic and Environmental Performance. Energies 2022, 15, 5065. [Google Scholar] [CrossRef]
- Meena, C.S.; Kumar, A.; Jain, S.; Rehman, A.U.; Mishra, S.; Sharma, N.K.; Bajaj, M.; Shafiq, M.; Eldin, E.T. Innovation in Green Building Sector for Sustainable Future. Energies 2022, 15, 6631. [Google Scholar] [CrossRef]
- Mahmood, Y.; Afrin, T.; Huang, Y.; Yodo, N. Sustainable Development for Oil and Gas Infrastructure from Risk, Reliability, and Resilience Perspectives. Sustainability 2023, 15, 4953. [Google Scholar] [CrossRef]
- Khan, M.J.; Wibowo, A.; Karim, Z.; Posoknistakul, P.; Matsagar, B.M.; Wu, K.C.-W.; Sakdaronnarong, C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers 2024, 16, 443. [Google Scholar] [CrossRef]
- Olabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; AlMallahi, M.N.; Shehata, N.; Alami, A.H.; Mdallal, A.; Hassan, A.A.M.; Sayed, E.T. Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array. Sustainability 2023, 15, 4641. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ameen, A.M.S.; Aldlemy, M.S.; Ali, M.; Abdulmohsin Afan, H.; Zhu, S.; Sami Al-Janabi, A.M.; Al-Ansari, N.; Tiyasha, T.; Tao, H. State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations. Sustainability 2020, 12, 1676. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Benson, C.H. Expectations for Coal Demand in Response to Evolving Carbon Policy and Climate Change Awareness. Energies 2022, 15, 3739. [Google Scholar] [CrossRef]
- Vysocky, J.; Misak, S. Review of Trends and Targets of Complex Systems for Power System Optimization. Energies 2020, 13, 1079. [Google Scholar] [CrossRef]
- Farahani, H.; Haghighi, M.; Behvand Usefi, M.M.; Ghasemi, M. Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells. Sustainability 2024, 16, 10458. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Guzmán, V.; Catriñir, P. Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies 2024, 17, 5532. [Google Scholar] [CrossRef]
- Vaz, T.; Quina, M.M.J.; Martins, R.C.; Gomes, J. Olive Mill Wastewater Treatment Strategies to Obtain Quality Water for Irrigation: A Review. Sci. Total Environ. 2024, 931, 172676. [Google Scholar] [CrossRef]
- Jia, M.; Jiang, G.; Chen, H.; Pang, Y.; Yuan, F.; Zhang, Z.; Miao, N.; Zheng, C.; Song, J.; Li, Y.; et al. Recent Developments on Processes for Recovery of Rhodium Metal from Spent Catalysts. Catalysts 2022, 12, 1415. [Google Scholar] [CrossRef]
- du Preez, S.P.; van Kaam, T.P.M.; Ringdalen, E.; Tangstad, M.; Morita, K.; Bessarabov, D.G.; van Zyl, P.G.; Beukes, J.P. An Overview of Currently Applied Ferrochrome Production Processes and Their Waste Management Practices. Minerals 2023, 13, 809. [Google Scholar] [CrossRef]
- Zeydan, E.; Arslan, S.; Turk, Y. 6G Wireless Communications for Industrial Automation: Scenarios, Requirements and Challenges. J. Ind. Inf. Integr. 2024, 42, 100732. [Google Scholar] [CrossRef]
- Banafaa, M.; Shayea, I.; Din, J.; Hadri Azmi, M.; Alashbi, A.; Ibrahim Daradkeh, Y.; Alhammadi, A. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex. Eng. J. 2023, 64, 245–274. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Liu, Y.; Li, D.; Xingguang, W.; Liu, Z. Toward 6G Technology: Intent-Driven Autonomous Intelligent Wireless Communication Network. In Proceedings of the 2024 IEEE Globecom Workshops (GC Wkshps), Cape Town, South Africa, 8–12 December 2024; pp. 1–5. [Google Scholar]








| Thematic Category | Record Count | Percentage (%) |
|---|---|---|
| Industry 4.0 | 115 | 87.79 |
| Warehouse Optimization | 87 | 66.41 |
| IoT and Edge Computing | 46 | 35.11 |
| Wireless Localization | 41 | 31.29 |
| Blockchain | 39 | 29.77 |
| Big Data | 36 | 27.48 |
| Multi-Agent Systems | 31 | 23.66 |
| RFID Security | 24 | 18.32 |
| Supply Chain Optimization | 22 | 16.79 |
| Vehicle Routing Problem | 21 | 16.03 |
| Augmented Reality | 17 | 12.98 |
| Manufacturing Scheduling | 16 | 12.21 |
| Deep Visual Recognition | 14 | 10.69 |
| Building Energy Efficiency | 13 | 9.92 |
| Electronic Health Records | 11 | 8.40 |
| Simultaneous Localization and Mapping | 10 | 7.63 |
| Reinforcement Learning | 10 | 7.63 |
| Smart Grid Optimization | 10 | 7.63 |
| Web of Science Categories | Number of Publications | Percent (%) |
| Engineering Electrical Electronic | 32 | 12.90% |
| Chemistry Analytical | 17 | 6.85% |
| Instruments instrumentation | 17 | 6.85% |
| Engineering Multidisciplinary | 15 | 6.05% |
| Physics applied | 15 | 6.05% |
| Chemistry Multidisciplinary | 13 | 5.24% |
| Computer Science Information Systems | 13 | 5.24% |
| Environmental Sciences | 11 | 4.44% |
| Materials Science Multidisciplinary | 11 | 4.44% |
| Telecommunications | 9 | 3.63% |
| Energy Fuels | 8 | 3.23% |
| Robotics | 7 | 2.82% |
| Engineering Mechanical | 6 | 2.42% |
| Environmental Studies | 6 | 2.42% |
| Green Sustainable Science Technology | 6 | 2.42% |
| Computer Science Artificial Intelligence | 5 | 2.02% |
| Operations Research Management Science | 4 | 1.61% |
| Remote Sensing | 4 | 1.61% |
| Automation Control Systems | 3 | 1.21% |
| Geosciences Multidisciplinary | 3 | 1.21% |
| Imaging Science Photographic Technology | 3 | 1.21% |
| Agriculture Multidisciplinary | 2 | 0.81% |
| Agronomy | 2 | 0.81% |
| Biochemistry Molecular Biology | 2 | 0.81% |
| Chemistry Physical | 2 | 0.81% |
| Computer Science Interdisciplinary Applications | 2 | 0.81% |
| Engineering Chemical | 2 | 0.81% |
| Mechanics | 2 | 0.81% |
| Multidisciplinary Sciences | 2 | 0.81% |
| Nanoscience Nanotechnology | 2 | 0.81% |
| Plant Sciences | 2 | 0.81% |
| Transportation Science Technology | 2 | 0.81% |
| Business | 1 | 0.40% |
| Chemistry Inorganic Nuclear | 1 | 0.40% |
| Computer Science Theory Methods | 1 | 0.40% |
| Construction building Technology | 1 | 0.40% |
| Engineering Civil | 1 | 0.40% |
| Engineering industrial | 1 | 0.40% |
| Engineering manufacturing | 1 | 0.40% |
| Engineering Marine | 1 | 0.40% |
| Engineering Ocean | 1 | 0.40% |
| Geochemistry Geophysics | 1 | 0.40% |
| Management | 1 | 0.40% |
| Materials Science Biomaterials | 1 | 0.40% |
| Mathematics Interdisciplinary Applications | 1 | 0.40% |
| Mineralogy | 1 | 0.40% |
| Mining Mineral processing | 1 | 0.40% |
| Neurosciences | 1 | 0.40% |
| Oceanography | 1 | 0.40% |
| Polymer Science | 1 | 0.40% |
| Term | Frequency | Year (Q1) | Year (Median) | Year (Q3) |
|---|---|---|---|---|
| mobile robot | 40 | 2021 | 2022 | 2023 |
| navigation | 30 | 2020 | 2022 | 2023 |
| system | 23 | 2018 | 2022 | 2023 |
| optimization | 15 | 2021 | 2023 | 2023 |
| path planning | 15 | 2021 | 2023 | 2023 |
| model | 9 | 2014 | 2020 | 2022 |
| vehicles | 7 | 2022 | 2023 | 2024 |
| exploration | 6 | 2021 | 2021 | 2022 |
| robotics | 6 | 2019 | 2021 | 2022 |
| systems | 6 | 2019 | 2021 | 2024 |
| Reference | Category | Representative Methods/Technologies | Innovative Points |
|---|---|---|---|
| [28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] | AI | CNN, DRL, PPO, hybrid RL, deep learning for perception | End-to-end learning from raw sensor data; adaptive decision-making in dynamic environments |
| [34,37,37,43,44,45,46,47,48,49,50] | SLAM | ORB-SLAM, RTAB-Map, Visual-SLAM, Semantic SLAM, Multi-robot SLAM | Real-time map building + localization; semantic anchoring of objects |
| [33,36,51,52,53,54] | Sensor Fusion | Kalman Filter, EKF, Particle Filter, deep fusion networks | Fuses LiDAR, camera, IMU, UWB for robust state estimation |
| [5,12,19,55,56,57,58] | Safety | Traversability grids, UWB-based localization, semantic safety maps, ISO 10218/TS 15066 protocols [20,21,59] | Integrates human safety into navigation logic; early-warning systems |
| [60,61,62] | Network | Wi-Fi 6/6E, 5G, autonomous mobile networks, WPAN alternatives | Enables real-time data exchange for fleet coordination |
| [32,41,51,58,63,64,65,66,67,68,69,70,71,72,73] | Path Planning | A, D Lite, RRT, APF, PSO, Ant Colony, Tabu Search | Balances global optimality with local reactivity; supports dynamic replanning |
| [33,36,42,54,66,74,75,76] | Implementation | Data fusion frameworks, RL-based controllers, semantic mapping, neural navigation systems | Integrates perception, planning, and control into deployable pipelines |
| [3,25,37,77,78,79,80] | Design/Model | Grid/topology/feature-based environment modeling, ROS/Gazebo simulation, CG-based planners | Provides structured frameworks for algorithm development and testing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmer, D.; Jurišić, M.; Plaščak, I.; Barač, Ž.; Glavaš, H.; Radočaj, D.; Benković, R. A Systematic Review of Intelligent Navigation in Smart Warehouses Using Prisma: Integrating AI, SLAM, and Sensor Fusion for Mobile Robots. Eng 2025, 6, 339. https://doi.org/10.3390/eng6120339
Zimmer D, Jurišić M, Plaščak I, Barač Ž, Glavaš H, Radočaj D, Benković R. A Systematic Review of Intelligent Navigation in Smart Warehouses Using Prisma: Integrating AI, SLAM, and Sensor Fusion for Mobile Robots. Eng. 2025; 6(12):339. https://doi.org/10.3390/eng6120339
Chicago/Turabian StyleZimmer, Domagoj, Mladen Jurišić, Ivan Plaščak, Željko Barač, Hrvoje Glavaš, Dorijan Radočaj, and Robert Benković. 2025. "A Systematic Review of Intelligent Navigation in Smart Warehouses Using Prisma: Integrating AI, SLAM, and Sensor Fusion for Mobile Robots" Eng 6, no. 12: 339. https://doi.org/10.3390/eng6120339
APA StyleZimmer, D., Jurišić, M., Plaščak, I., Barač, Ž., Glavaš, H., Radočaj, D., & Benković, R. (2025). A Systematic Review of Intelligent Navigation in Smart Warehouses Using Prisma: Integrating AI, SLAM, and Sensor Fusion for Mobile Robots. Eng, 6(12), 339. https://doi.org/10.3390/eng6120339

