- Article
Reinforcement Learning for Uplink Access Optimization in UAV-Assisted 5G Networks Under Emergency Response
- Abid Mohammad Ali,
- Petro Mushidi Tshakwanda and
- Henok Berhanu Tsegaye
- + 5 authors
We study UAV-assisted 5G uplink connectivity for disaster response, in which a UAV (unmanned aerial vehicle) acts as an aerial base station to restore service to ground users. We formulate a joint control problem coupling UAV kinematics (bounded acceleration and velocity), per-subchannel uplink power allocation, and uplink non-orthogonal multiple access (UL-NOMA) scheduling with adaptive successive interference cancellation (SIC) under a minimum user-rate constraint. The wireless channel follows 3GPP urban macro (UMa) with probabilistic line of sight/non-line of sight (LoS/NLoS), realistic receiver noise levels and noise figure, and user equipment (UE) transmit-power limits. We propose a bounded-action proximal policy optimization with generalized advantage estimation (PPO-GAE) agent that parameterizes acceleration and power with squashed distributions and enforces feasibility by design. Across four user distributions (clustered, uniform, ring, and edge-heavy) and multiple rate thresholds, our method increases the fraction of users meeting the target rate by 8.2–10.1 percentage points compared to strong baselines (OFDMA with heuristic placement, PSO-based placement/power, and PPO without NOMA) while reducing median UE transmit power by . The results are averaged over at least five random seeds, with confidence intervals. Ablations isolate the gains from NOMA, adaptive SIC order, and bounded-action parameterization. We discuss robustness to imperfect SIC and CSI errors and release code/configurations to support reproducibility.
26 December 2025







