Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review
Abstract
:1. Introduction
2. Location Determining Techniques
2.1. Global Navigation Satellite Systems (GNSS)
2.2. Ultra-Wideband (UWB)
2.3. Radio Frequency Identification (RFID)
2.4. Wireless Sensor Networks
2.5. Computer Vision Technology
2.6. Challenges with Location Determining Technologies
3. Welfare and Animal Location
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Jonge, J.; van Trijp, H.C.M. Meeting Heterogeneity in Consumer Demand for Animal Welfare: A Reflection on Existing Knowledge and Implications for the Meat Sector. J. Agric. Environ. Ethics 2013, 26, 629–661. [Google Scholar] [CrossRef]
- European Union. Attitudes of Europeans towards Animal Welfare; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Yang, W.; Renwick, A. Consumer Willingness to Pay Price Premiums for Credence Attributes of Livestock Products—A Meta-Analysis. J. Agric. Econ. 2019, 70, 618–639. [Google Scholar] [CrossRef]
- Brambell, F.W.R. Report of the Technical Committee to Enquire into the Welfare of Animals Kept Under Intensive Livestock Husbandry Systems; Her Majesty’s Stationary Office: London, UK, 1965. [Google Scholar]
- FAWC. Report on Priorities for Animal Welfare Research and Development; FAWC: London, UK, 1993. [Google Scholar]
- Jones, B.; Manteca, X. Practical Strategies for Improving Farm Animal Welfare: An Information Resource; Welfare Quality: Lelystad, the Netherlands, 2009. [Google Scholar]
- Mellor, D.J.; Reid, C.S.W. Concepts of Animal Well-Being and Predicting the Impact of Procedures on Experimental Animals. In Experimental Research and Animal Welfare Collection; WellBeing International: Potomac, MD, USA, 1994. [Google Scholar]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human–Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Operational Details of the Five Domains Model and Its Key Applications to the Assessment and Management of Animal Welfare. Animals 2017, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welfare Quality. Welfare Quality Assessment Protocol for Cattle; Welfare Quality: Lelystad, the Netherlands, 2009. [Google Scholar]
- Knierim, U.; Winckler, C. On-Farm Welfare Assessment in Cattle: Validity, Reliability and Feasibility Issues and Future Perspectives with Special Regard to the Welfare Quality® Approach. Anim. Welf. 2009, 18, 451–458. [Google Scholar]
- Blokhuis, H.J.; Veissier, I.; Miele, M.; Jones, B. The Welfare Quality® Project and beyond: Safeguarding Farm Animal Well-Being. Acta Agric. Scand. A Anim. Sci. 2010, 60, 129–140. [Google Scholar] [CrossRef]
- De Vries, M.; Engel, B.; Den Uijl, I.; Van Schaik, G.; Dijkstra, T.; De Boer, I.J.M.; Bokkers, E.A.M. Assessment Time of the Welfare Quality® Protocol for Dairy Cattle. Anim. Welf. 2013, 22, 85–93. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. OIE Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef]
- Chapa, J.M.; Maschat, K.; Iwersen, M.; Baumgartner, J.; Drillich, M. Accelerometer Systems as Tools for Health and Welfare Assessment in Cattle and Pigs—A Review. Behav. Processes 2020, 181, 104262. [Google Scholar] [CrossRef]
- Van Erp-Van der Kooij, E.; Rutter, S.M. Using Precision Farming to Improve Animal Welfare. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Provolo, G. A Review of Welfare Indicators of Indoor-Housed Dairy Cow as a Basis for Integrated Automatic Welfare Assessment Systems. Animals 2020, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Maroto Molina, F.; Pérez Marín, C.C.; Molina Moreno, L.; Agüera Buendía, E.I.; Pérez Marín, D.C. Welfare Quality® for Dairy Cows: Towards a Sensor-Based Assessment. J. Dairy Res. 2020, 87, 28–33. [Google Scholar] [CrossRef]
- Silva, S.R.; Araujo, J.P.; Guedes, C.; Silva, F.; Almeida, M.; Cerqueira, J.L. Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition. Animals 2021, 11, 2253. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 4338. [Google Scholar] [CrossRef] [PubMed]
- Porto, S.M.C.; Arcidiacono, C.; Giummarra, A.; Anguzza, U.; Cascone, G. Localisation and Identification Performances of a Real-Time Location System Based on Ultra Wide Band Technology for Monitoring and Tracking Dairy Cow Behaviour in a Semi-Open Free-Stall Barn. Comput. Electron. Agric. 2014, 108, 221–229. [Google Scholar] [CrossRef]
- Chapa, J.M.; Lidauer, L.; Steininger, A.; Öhlschuster, M.; Potrusil, T.; Sigler, M.; Auer, W.; Azizzadeh, M.; Drillich, M.; Iwersen, M. Use of a Real-Time Location System to Detect Cows in Distinct Functional Areas within a Barn. JDS Commun. 2021, 2, 217–222. [Google Scholar] [CrossRef]
- Huhtala, A.; Suhonen, K.; Mäkelä, P.; Hakojärvi, M.; Ahokas, J. Evaluation of Instrumentation for Cow Positioning and Tracking Indoors. Biosyst. Eng. 2007, 96, 399–405. [Google Scholar] [CrossRef]
- Tullo, E.; Fontana, I.; Gottardo, D.; Sloth, K.H.; Guarino, M. Technical Note: Validation of a Commercial System for the Continuous and Automated Monitoring of Dairy Cow Activity. J. Dairy Sci. 2016, 99, 7489–7494. [Google Scholar] [CrossRef] [Green Version]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate Lameness Leads to Marked Behavioral Changes in Dairy Cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Bernes, G.; Hetta, M.; Karlsson, J. Tracking and Analysing Social Interactions in Dairy Cattle with Real-Time Locating System and Machine Learning. J. Syst. Archit. 2021, 116, 102139. [Google Scholar] [CrossRef]
- Chopra, K.; Hodges, H.R.; Barker, Z.E.; Vázquez Diosdado, J.A.; Amory, J.R.; Cameron, T.C.; Croft, D.P.; Bell, N.J.; Codling, E.A. Proximity Interactions in a Permanently Housed Dairy Herd: Network Structure, Consistency, and Individual Differences. Front. Vet. Sci. 2020, 7, 3715. [Google Scholar] [CrossRef] [PubMed]
- Rutter, S.M.; Beresford, N.A.; Roberts, G. Use of GPS to Identify the Grazing Areas of Hill Sheep. Comput. Electron. Agric. 1997, 17, 177–188. [Google Scholar] [CrossRef]
- Tomkins, N.; O’Reagain, P. Global Positioning Systems Indicate Landscape Preferences of Cattle in the Subtropical Savannas. Rangel. J. 2007, 29, 217–222. [Google Scholar] [CrossRef]
- Hebblewhite, M.; Haydon, D.T. Distinguishing Technology from Biology: A Critical Review of the Use of GPS Telemetry Data in Ecology. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2303–2312. [Google Scholar] [CrossRef]
- Ganskopp, D. Manipulating Cattle Distribution with Salt and Water in Large Arid-Land Pastures: A GPS/GIS Assessment. Appl. Anim. Behav. Sci. 2001, 73, 251–262. [Google Scholar] [CrossRef]
- Liao, C.; Clark, P.E.; Shibia, M.; DeGloria, S.D. Spatiotemporal Dynamics of Cattle Behavior and Resource Selection Patterns on East African Rangelands: Evidence from GPS-Tracking. Int. J. Geogr. Inf. Sci. 2018, 32, 1523–1540. [Google Scholar] [CrossRef]
- Mautz, R. Overview of Current Indoor Positioning Systems. Geod. Cartogr. 2009, 35, 18–22. [Google Scholar] [CrossRef]
- Xu, R.; Chen, W.; Xu, Y.; Ji, S. A New Indoor Positioning System Architecture Using Gps Signals. Sensors 2015, 15, 10074–10087. [Google Scholar] [CrossRef] [Green Version]
- Li, X. A GPS-Based Indoor Positioning System with Delayed Repeaters. IEEE Trans. Veh. Technol. 2019, 68, 1688–1701. [Google Scholar] [CrossRef]
- Ganskopp, D.C.; Johnson, D.D. GPS Error in Studies Addressing Animal Movements and Activities. Rangel. Ecol. Manag. 2007, 60, 350–358. [Google Scholar] [CrossRef]
- Clark, P.E.; Johnson, D.E.; Kniep, M.A.; Jermann, P.; Huttash, B.; Wood, A.; Johnson, M.; McGillivan, C.; Titus, K. An Advanced, Low-Cost, GPS-Based Animal Tracking System. Rangel. Ecol. Manag. 2006, 59, 334–340. [Google Scholar] [CrossRef]
- Schleppe, J.B.; Lachapelle, G.; Booker, C.W.; Pittman, T. Challenges in the Design of a GNSS Ear Tag for Feedlot Cattle. Comput. Electron. Agric. 2010, 70, 84–95. [Google Scholar] [CrossRef]
- Johnson, D.D.; Ganskopp, D.C. GPS Collar Sampling Frequency: Effects on Measures of Resource Use. Rangel. Ecol. Manag. 2008, 61, 226–231. [Google Scholar] [CrossRef]
- Williams, M.L.; James, W.P.; Rose, M.T. Variable Segmentation and Ensemble Classifiers for Predicting Dairy Cow Behaviour. Biosyst. Eng. 2019, 178, 156–167. [Google Scholar] [CrossRef]
- Millward, M.F.; Bailey, D.W.; Cibils, A.F.; Holechek, J.L. A GPS-Based Evaluation of Factors Commonly Used to Adjust Cattle Stocking Rates on Both Extensive and Mountainous Rangelands. Rangelands 2020, 42, 63–71. [Google Scholar] [CrossRef]
- Plaza, J.; Palacios, C.; Sánchez-García, M.; Criado, M.; Nieto, J.; Sánchez, N. Monitoring Spatial Behavior of Pastoralist Sheep through Gps, Lidar Data and Vnir Image. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2020, 43, 169–176. [Google Scholar] [CrossRef]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site Use of Grazing Cattle and Sheep in a Large-Scale Pasture Landscape: A GPS/GIS Assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics. Sensors 2020, 20, 4741. [Google Scholar] [CrossRef]
- Rivero, M.J.; Grau-Campanario, P.; Mullan, S.; Held, S.D.E.; Stokes, J.E.; Lee, M.R.F.; Cardenas, L.M. Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors 2021, 21, 2696. [Google Scholar] [CrossRef] [PubMed]
- Tobin, C.; Bailey, D.W.; Trotter, M.G. Tracking and Sensor-Based Detection of Livestock Water System Failure: A Case Study Simulation. Rangel. Ecol. Manag. 2021, 77, 9–16. [Google Scholar] [CrossRef]
- Tobin, C.T.; Bailey, D.W.; Stephenson, M.B.; Trotter, M.G. Temporal Changes in Association Patterns of Cattle Grazing at Two Stocking Densities in a Central Arizona Rangeland. Animals 2021, 11, 2635. [Google Scholar] [CrossRef]
- Riaboff, L.; Relun, A.; Petiot, C.E.; Feuilloy, M.; Couvreur, S.; Madouasse, A. Identification of Discriminating Behavioural and Movement Variables in Lameness Scores of Dairy Cows at Pasture from Accelerometer and GPS Sensors Using a Partial Least Squares Discriminant Analysis. Prev. Vet. Med. 2021, 193, 105383. [Google Scholar] [CrossRef]
- Calcante, A.; Tangorra, F.M.; Marchesi, G.; Lazzari, M. A GPS/GSM Based Birth Alarm System for Grazing Cows. Comput. Electron. Agric. 2014, 100, 123–130. [Google Scholar] [CrossRef]
- Pearson, C.; Filippi, P.; Lush, L.; González, L.A. Automated Behavioural Monitoring Allows Assessment of the Relationships between Cow and Calf Behaviour and Calves’ Survivability and Performance. Appl. Anim. Behav. Sci. 2021, 245, 105493. [Google Scholar] [CrossRef]
- Fielding, H.R.; Silk, M.J.; McKinley, T.J.; Delahay, R.J.; Wilson-Aggarwal, J.K.; Gauvin, L.; Ozella, L.; Cattuto, C.; McDonald, R.A. Spatial and Temporal Variation in Proximity Networks of Commercial Dairy Cattle in Great Britain. Prev. Vet. Med. 2021, 194, 105443. [Google Scholar] [CrossRef] [PubMed]
- Hollingdale, E.; Pérez-Barbería, F.J.; Walker, D.M.P. Inferring Symmetric and Asymmetric Interactions between Animals and Groups from Positional Data. PLoS ONE 2018, 13, e0208202. [Google Scholar] [CrossRef]
- Schlecht, E.; Hülsebusch, C.; Mahler, F.; Becker, K. The Use of Differentially Corrected Global Positioning System to Monitor Activities of Cattle at Pasture. Appl. Anim. Behav. Sci. 2004, 85, 185–202. [Google Scholar] [CrossRef]
- Guo, Y.; Poulton, G.; Corke, P.; Bishop-Hurley, G.J.; Wark, T.; Swain, D.L. Using Accelerometer, High Sample Rate GPS and Magnetometer Data to Develop a Cattle Movement and Behaviour Model. Ecol. Modell. 2009, 220, 2068–2075. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Winters, C.; Estell, R.E.; Fredrickson, E.L.; Doniec, M.; Detweiler, C.; Rus, D.; James, D.; Nolen, B. Characterising the Spatial and Temporal Activities of Free-Ranging Cows from GPS Data. Rangel. J. 2012, 34, 149–161. [Google Scholar] [CrossRef]
- Homburger, H.; Schneider, M.K.; Hilfiker, S.; Lüscher, A. Inferring Behavioral States of Grazing Livestock from High-Frequency Position Data Alone. PLoS ONE 2014, 9, e114522. [Google Scholar] [CrossRef] [PubMed]
- De Weerd, N.; Van Langevelde, F.; Van Oeveren, H.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; De Boer, W.F. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat. PLoS ONE 2015, 10, e129030. [Google Scholar] [CrossRef]
- Williams, M.L.; Mac Parthaláin, N.; Brewer, P.; James, W.P.J.; Rose, M.T. A Novel Behavioral Model of the Pasture-Based Dairy Cow from GPS Data Using Data Mining and Machine Learning Techniques. J. Dairy Sci. 2016, 99, 2063–2075. [Google Scholar] [CrossRef] [Green Version]
- Alawneh, J.; Barreto, M.; Bome, K.; Soust, M. Description of Behavioral Patterns Displayed by a Recently Weaned Cohort of Healthy Dairy Calves. Animals 2020, 10, 2452. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, M.M.; Cibils, A.F.; Estell, R.E.; Gong, Q.; Cao, H.; Gonzalez, A.L.; Nyamuryekung’e, S.; Spiegal, S.A. Can Cattle Geolocation Data Yield Behavior-Based Criteria to Inform Precision Grazing Systems on Rangeland? Livest. Sci. 2022, 255, 104801. [Google Scholar] [CrossRef]
- Meckbach, C.; Elsholz, S.; Siede, C. An Information-Theoretic Approach to Detect the Associations of GPS-Tracked Heifers in Pasture. Sensors 2021, 21, 7585. [Google Scholar] [CrossRef] [PubMed]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolev, A.; Genizi, A.; Ganskopp, D. Inference of Animal Activity from GPS Collar Data on Free-Ranging Cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar] [CrossRef]
- Ungar, E.D.; Schoenbaum, I.; Henkin, Z.; Dolev, A.; Yehuda, Y.; Brosh, A. Inference of the Activity Timeline of Cattle Foraging on a Mediterranean Woodland Using GPS and Pedometry. Sensors 2011, 11, 362–383. [Google Scholar] [CrossRef] [Green Version]
- Augustine, D.J.; Derner, J.D. Assessing Herbivore Foraging Behavior with GPS Collars in a Semiarid Grassland. Sensors 2013, 13, 3711–3723. [Google Scholar] [CrossRef]
- Spink, A.; Cresswell, B.; Kölzsch, A.; Van Langevelde, F.; Neefjes, M.; Noldus, L.P.J.J.; Van Oeveren, H.; Prins, H.; Van Der Wal, T.; De Weerd, N.; et al. Animal Behaviour Analysis with GPS and 3D Accelerometers. In Proceedings of the Precision Livestock Farming 2013, Leuven, Belgium, 10–12 September 2013; Berckmans, D., Vandermeulen, J., Eds.; EA-PLF: Parma, Italy, 2013; pp. 229–239. [Google Scholar]
- González, L.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Crossman, C. Behavioral Classification of Data from Collars Containing Motion Sensors in Grazing Cattle. Comput. Electron. Agric. 2015, 110, 91–102. [Google Scholar] [CrossRef]
- Mora-Delgado, J.; Nelson, N.; Fauchille, A.; Utsumi, S. Application of GPS and GIS to Study Foraging Behavior of Dairy Cattle. Agron. Costarric. 2016, 40, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. Use of GPS Tracking Collars and Accelerometers for Rangeland Livestock Production Research. Transl. Anim. Sci. 2018, 2, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tofastrud, M.; Hegnes, H.; Devineau, O.; Zimmermann, B. Activity Patterns of Free-Ranging Beef Cattle in Norway. Acta Agric. Scand. A Anim. Sci. 2018, 68, 39–47. [Google Scholar] [CrossRef]
- Brennan, J.; Johnson, P.; Olson, K. Classifying Season Long Livestock Grazing Behavior with the Use of a Low-Cost GPS and Accelerometer. Comput. Electron. Agric. 2021, 181, 105957. [Google Scholar] [CrossRef]
- Harris, N.R.; Johnson, D.E.; McDougald, N.K.; George, M.R. Social Associations and Dominance of Individuals in Small Herds of Cattle. Rangel. Ecol. Manag. 2007, 60, 339–349. [Google Scholar] [CrossRef]
- Cheleuitte-Nieves, C.; Perotto-Baldivieso, H.L.; Wu, X.B.; Cooper, S.M. Association Patterns Reveal Dispersal-Aggregation Dynamics among Cattle in a South Texas Rangeland, USA. Ecol. Process. 2018, 7, 29. [Google Scholar] [CrossRef]
- Umstatter, C. The Evolution of Virtual Fences: A Review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Haynes, S.J.; Lea, J.M.; Farrer, W.J.; Lee, C. Temporary Exclusion of Cattle from a Riparian Zone Using Virtual Fencing Technology. Animals 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Lomax, S.; Colusso, P.; Clark, C.E.F. Does Virtual Fencing Work for Grazing Dairy Cattle? Animals 2019, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Henshall, J.M.; Wark, T.J.; Crossman, C.C.; Reed, M.T.; Brewer, H.G.; O’Grady, J.; Fisher, A.D. Associative Learning by Cattle to Enable Effective and Ethical Virtual Fences. Appl. Anim. Behav. Sci. 2009, 119, 15–22. [Google Scholar] [CrossRef]
- Stampa, E.; Zander, K.; Hamm, U. Insights into German Consumers’ Perceptions of Virtual Fencing in Grassland-Based Beef and Dairy Systems: Recommendations for Communication. Animals 2020, 10, 2267. [Google Scholar] [CrossRef] [PubMed]
- Acosta, N.; Barreto, N.; Caitano, P.; Marichal, R.; Pedemonte, M.; Oreggioni, J. Research Platform for Cattle Virtual Fences. In Proceedings of the IEEE International Conference on Industrial Technology, Buenos Aires, Argentina, 26–28 February 2020; pp. 797–802. [Google Scholar]
- Campbell, D.L.M.; Lea, J.M.; Keshavarzi, H.; Lee, C. Virtual Fencing Is Comparable to Electric Tape Fencing for Cattle Behavior and Welfare. Front. Vet. Sci. 2019, 6, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearton, T.; Marini, D.; Cowley, F.; Belson, S.; Keshavarzi, H.; Mayes, B.; Lee, C. The Influence of Predictability and Controllability on Stress Responses to the Aversive Component of a Virtual Fence. Front. Vet. Sci. 2020, 7, 523. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Campbell, D.L.M. A Multi-Disciplinary Approach to Assess the Welfare Impacts of a New Virtual Fencing Technology. Front. Vet. Sci. 2021, 8, 7709. [Google Scholar] [CrossRef] [PubMed]
- Verdon, M.; Langworthy, A.; Rawnsley, R. Virtual Fencing Technology to Intensively Graze Lactating Dairy Cattle. II: Effects on Cow Welfare and Behavior. J. Dairy Sci. 2021, 104, 7084–7094. [Google Scholar] [CrossRef]
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-esbensen, A.; Kristian, A.; Alstrup, O.; Sonne, C.; Pertoldi, C.; Bruhn, D.; Frikke, J.; et al. Is Virtual Fencing an Effective Way of Enclosing Cattle? Personality, Herd Behaviour and Welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Amorim Cestari, A.; Franks, B.; Fregonesi, J.A.; Weary, D.M. Dairy Cows Value Access to Pasture as Highly as Fresh Feed. Sci. Rep. 2017, 7, 44953. [Google Scholar] [CrossRef] [Green Version]
- Schantz, H.G. A Brief History of UWB Antennas. In Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, Reston, VA, USA, 16–19 November 2003; pp. 209–213. [Google Scholar]
- Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V.; Sahinoglu, Z. Localization via Ultra-Wideband Radios: A Look at Positioning Aspects of Future Sensor Networks. IEEE Signal Process. Mag. 2005, 22, 70–84. [Google Scholar] [CrossRef]
- Rahayu, Y.; Rahman, T.A.; Ngah, R.; Hall, P.S. Ultra Wideband Technology and Its Applications. In Proceedings of the 5th IEEE and IFIP International Conference on Wireless and Optical Communications Networks, Surabaya, Indonesia, 5–7 May 2008; pp. 1–5. [Google Scholar]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [Green Version]
- Hindermann, P.; Nüesch, S.; Früh, D.; Rüst, A.; Gygax, L. High Precision Real-Time Location Estimates in a Real-Life Barn Environment Using a Commercial Ultra Wideband Chip. Comput. Electron. Agric. 2020, 170, 105250. [Google Scholar] [CrossRef]
- Byrne, D.T.; O’Brien, B.; O’Leary, N.; McDonagh, A.; Lidauer, L.; Kassebacher, T.; Shalloo, L. Validation of the Localisation Accuracy of the SMARTBOW Ear Tag in a Pasture Based Milking System. In Proceedings of the Precision Livestock Farming 2019, Cork, Ireland, 26–29 August 2019; pp. 484–487. [Google Scholar]
- Li, W.; Bakker, J.D.; Li, Y.; Zheng, S.; Li, F.Y. Applying a High-Precision Tracking System to Distinguish the Spatiotemporal Patterns of Animal Movement in Grassland Ecology. Biol. Conserv. 2021, 255, 109016. [Google Scholar] [CrossRef]
- Meunier, B.; Pradel, P.; Sloth, K.H.; Cirié, C.; Delval, E.; Mialon, M.M.; Veissier, I. Image Analysis to Refine Measurements of Dairy Cow Behaviour from a Real-Time Location System. Biosyst. Eng. 2018, 173, 32–44. [Google Scholar] [CrossRef]
- Ren, K.; Nielsen, P.P.; Alam, M.; Rönnegård, L. Where Do We Find Missing Data in a Commercial Real-Time Location System? Evidence from 2 Dairy Farms. JDS Commun. 2021, 2, 345–350. [Google Scholar] [CrossRef]
- Pastell, M.; Frondelius, L. A Hidden Markov Model to Estimate the Time Dairy Cows Spend in Feeder Based on Indoor Positioning Data. Comput. Electron. Agric. 2018, 152, 182–185. [Google Scholar] [CrossRef]
- Chewasoonthorn, P.; Kwanmuang, S. Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model. Int. J. Electron. Commun. Eng. 2021, 15, 340–343. [Google Scholar]
- Melzer, N.; Foris, B.; Langbein, J. Validation of a Real-Time Location System for Zone Assignment and Neighbor Detection in Dairy Cow Groups. Comput. Electron. Agric. 2021, 187, 106280. [Google Scholar] [CrossRef]
- Veissier, I.; Mialon, M.M.; Sloth, K.H. Short Communication: Early Modification of the Circadian Organization of Cow Activity in Relation to Disease or Estrus. J. Dairy Sci. 2017, 100, 3969–3974. [Google Scholar] [CrossRef]
- Frondelius, L.; Kajava, S.; Lindeberg, H.; Mononen, J.; Pastell, M. Measuring the Effect of Hoof Lesions on Cow’s Walking, Lying and Eating Behavior. In Proceedings of the Precision Livestock Farming 2015—Papers Presented at the 7th European Conference on Precision Livestock Farming, Milan, Italy, 15–18 September 2015; pp. 363–369. [Google Scholar]
- Dantzer, R. Cytokine-Induced Sickness Behavior: Where Do We Stand? Brain. Behav. Immun. 2001, 15, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Ipema, A.H.; Van De Ven, T.; Hogewerf, P.H. Validation and Application of an Indoor Localization System for Animals. In Proceedings of the Precision Livestock Farming 2013, Leuven, Belgium, 10–12 September 2013; pp. 135–144. [Google Scholar]
- Wolfger, B.; Jones, B.W.; Orsel, K.; Bewley, J.M. Technical Note: Evaluation of an Ear-Attached Real-Time Location Monitoring System. J. Dairy Sci. 2017, 100, 2219–2224. [Google Scholar] [CrossRef]
- Oberschätzl, R.; Haidn, B.; Peis, R.; Kulpi, F.; Völkl, C. Validation of Automated Processed Position Data for Assessing Dairy Cow Behaviour. Landtechnik 2015, 70, 3–8. [Google Scholar] [CrossRef]
- Homer, E.M.; Gao, Y.; Meng, X.; Dodson, A.; Webb, R.; Garnsworthy, P.C. Technical Note: A Novel Approach to the Detection of Estrus in Dairy Cows Using Ultra-Wideband Technology. J. Dairy Sci. 2013, 96, 6529–6534. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, C.; Porto, S.M.C.; Mancino, M.; Cascone, G. A Software Tool for the Automatic and Real-Time Analysis of Cow Velocity Data in Free-Stall Barns: The Case Study of Oestrus Detection from Ultra-Wide-Band Data. Biosyst. Eng. 2018, 173, 157–165. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and Estrus Detection in Dairy Cattle Using a Combination of Indoor Localization and Accelerometer Sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Wang, J.; Bell, M.; Liu, X.; Liu, G. Machine-Learning Techniques Can Enhance Dairy Cow Estrus Detection Using Location and Acceleration Data. Animals 2020, 10, 1160. [Google Scholar] [CrossRef] [PubMed]
- Shane, D.D.; White, B.J.; Larson, R.L.; Amrine, D.E.; Kramer, J.L. Probabilities of Cattle Participating in Eating and Drinking Behavior When Located at Feeding and Watering Locations by a Real Time Location System. Comput. Electron. Agric. 2016, 127, 460–466. [Google Scholar] [CrossRef]
- Li, S.; Visich, J.K.; Khumawala, B.M.; Zhang, C. Radio Frequency Identification Technology: Applications, Technical Challenges and Strategies. Sens. Rev. 2006, 26, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Rydberg, A.; Skarin, A. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef]
- Curran, K.; Norrby, S. RFID-Enabled Location Determination: Within Indoor Environments. Int. J. Ambient Comput. Intell. 2009, 1, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt-Henrich, S.G.; Fröhlich, E.K.F.; Burose, F.; Fleurent, J.; Gantner, M.; Zähner, M. Registrierung Des Auslaufverhaltens Einzelner Legehennen Mit Einem RFID-System. Individual Tracking of Laying Hens with an RFID-System. Landtechnik 2014, 69, 301–307. [Google Scholar]
- Siegford, J.M.; Berezowski, J.; Biswas, S.K.; Daigle, C.L.; Gebhardt-Henrich, S.G.; Hernandez, C.E.; Thurner, S.; Toscano, M.J. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology. Animals 2016, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Adrion, F.; Kapun, A.; Holland, E.M.; Staiger, M.; Löb, P.; Gallmann, E. Novel Approach to Determine the Influence of Pig and Cattle Ears on the Performance of Passive UHF-RFID Ear Tags. Comput. Electron. Agric. 2017, 140, 168–179. [Google Scholar] [CrossRef]
- Dogan, H.; Basyigit, I.B.; Yavuz, M.; Helhel, S. Signal Level Performance Variation of Radio Frequency Identification Tags Used in Cow Body. Int. J. RF Microw. Comput. Eng. 2019, 29, e21674. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Huisma, C.; McAllister, T.A. Validation of a Radio Frequency Identification System for Monitoring the Feeding Patterns of Feedlot Cattle. Livest. Prod. Sci. 1999, 60, 27–31. [Google Scholar] [CrossRef]
- Adrion, F.; Keller, M.; Bozzolini, G.B.; Umstatter, C. Setup, Test and Validation of a UHF RFID System for Monitoring Feeding Behaviour of Dairy Cows. Sensors 2020, 20, 7035. [Google Scholar] [CrossRef] [PubMed]
- Foldager, L.; Trénel, P.; Munksgaard, L.; Thomsen, P.T. Technical Note: Random Forests Prediction of Daily Eating Time of Dairy Cows from 3-Dimensional Accelerometer and Radiofrequency Identification. J. Dairy Sci. 2020, 103, 6271–6275. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.R.; Fox, D.R.; Bishop-Hurley, G.J.; Swain, D.L. Use of Radio Frequency Identification (RFID) Technology to Record Grazing Beef Cattle Water Point Use. Comput. Electron. Agric. 2019, 156, 193–202. [Google Scholar] [CrossRef]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A Sensor-Based Solution to Monitor Grazing Cattle Drinking Behaviour and Water Intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- Simanungkalit, G.; Barwick, J.; Cowley, F.; Dawson, B.; Dobos, R.; Hegarty, R. Use of an Ear-Tag Accelerometer and a Radio-Frequency Identification (RFID) System for Monitoring the Licking Behaviour in Grazing Cattle. Appl. Anim. Behav. Sci. 2021, 244, 105491. [Google Scholar] [CrossRef]
- Toaff-Rosenstein, R.L.; Velez, M.; Tucker, C.B. Technical Note: Use of an Automated Grooming Brush by Heifers and Potential for Radiofrequency Identification-Based Measurements of This Behavior. J. Dairy Sci. 2017, 100, 8430–8437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, C.S.; Sivalingam, K.M.; Znati, T. Wireless Sensor Networks; Springer: New York, NY, USA, 2004; ISBN 9781119130536. [Google Scholar]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Networks 2002, 38, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Mudziwepasi, S.K.; Scott, M.S. Assessment of a Wireless Sensor Network Based Monitoring Tool for Zero Effort Technologies: A Cattle-Health and Movement Monitoring Test Case. In Proceedings of the 2014 IEEE 6th International Conference on Adaptive Science & Technology (ICAST), Ota, Nigeria, 29–31 October 2014; IEEE: Ota, Nigeria, 2014; pp. 1–6. [Google Scholar]
- Sharma, B.; Koundal, D. Cattle Health Monitoring System Using Wireless Sensor Network: A Survey from Innovation Perspective. IET Wirel. Sens. Syst. 2018, 8, 143–151. [Google Scholar] [CrossRef]
- Nikodem, M. Bluetooth Low Energy Livestock Positioning for Smart Farming Applications. In Proceedings of the Computational Science—ICCS 2021, Krakow, Poland, 16–18 June 2021; pp. 55–67. [Google Scholar]
- Tøgersen, F.A.; Skjøth, F.; Munksgaard, L.; Højsgaard, S. Wireless Indoor Tracking Network Based on Kalman Filters with an Application to Monitoring Dairy Cows. Comput. Electron. Agric. 2010, 72, 119–126. [Google Scholar] [CrossRef]
- Huircán, J.I.; Muñoz, C.; Young, H.; Von Dossow, L.; Bustos, J.; Vivallo, G.; Toneatti, M. ZigBee-Based Wireless Sensor Network Localization for Cattle Monitoring in Grazing Fields. Comput. Electron. Agric. 2010, 74, 258–264. [Google Scholar] [CrossRef]
- Trogh, J.; Plets, D.; Martens, L.; Joseph, W. Bluetooth Low Energy Based Location TRacking for Livestock Monitoring. In Proceedings of the 8th European Conference on Precision Livestock Farming (EC-PLF 2017), Nantes, France, 12–14 September 2017. [Google Scholar]
- Karunarathne, G.G.K.W.M.S.I.R.; Kulawansa, K.A.D.T.; Firdhous, M.F.M. Wireless Communication Technologies in Internet of Things: A Critical Evaluation. In Proceedings of the International Conference on Intelligent and Innovative Computing Applications, ICONIC 2018, Plaine Magnien, Mauritius, 6–7 December 2018. [Google Scholar]
- Singh, D.K.; Sobti, R. Wireless Communication Technologies for Internet of Things and Precision Agriculture: A Review. In Proceedings of the IEEE International Conference on Signal Processing, Computing and Control, Solan, India, 7–9 October 2021; IEEE: Solan, India, 2021; pp. 765–769. [Google Scholar]
- Molapo, N.A.; Malekian, R.; Nair, L. Real-Time Livestock Tracking System with Integration of Sensors and Beacon Navigation. Wirel. Pers. Commun. 2019, 104, 853–879. [Google Scholar] [CrossRef]
- Feng, X.; Yan, F.; Liu, X. Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [Green Version]
- Gay-Fernández, J.A.; Cuiiñas, I.; Sánchez, M.G.; Alejos, A.V. Radio-Electric Validation of an Electronic Cowbell Based on ZigBee Technology. IEEE Antennas Propag. Mag. 2011, 53, 40–44. [Google Scholar] [CrossRef]
- Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.E.; Garrido-Varo, A.; Pérez-Marín, D.C. A Low-Cost IOT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [Google Scholar] [CrossRef] [Green Version]
- Burman, K.S.; Schmidt, S.; Houssaini, D.E.; Kanoun, O. Design and Evaluation of a Low Energy Bluetooth Sensor Node for Animal Monitoring. In Proceedings of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, SSD 2021, Monastir, Tunisia, 22–25 March 2021; pp. 971–978. [Google Scholar]
- Makario, J.; Maina, C.W. A Bluetooth Low Energy (BLE) Based System for Livestock Tracking and Localization. In Proceedings of the 2021 IST-Africa Conference, IST-Africa 2021, Dublin, Ireland, 10–14 May 2021; IST-Africa Institute and Authors: Dublin, Ireland, 2021; pp. 1–7. [Google Scholar]
- Sendra, S.; Parra, L.; Lloret, J.; Khan, S. Systems and Algorithms for Wireless Sensor Networks Based on Animal and Natural Behavior. Int. J. Distrib. Sens. Networks 2015, 2015, 625972. [Google Scholar] [CrossRef]
- Kwong, K.H.; Wu, T.T.; Goh, H.G.; Sasloglou, K.; Stephen, B.; Glover, I.; Shen, C.; Du, W.; Michie, C.; Andonovic, I. Practical Considerations for Wireless Sensor Networks in Cattle Monitoring Applications. Comput. Electron. Agric. 2012, 81, 33–44. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Søgaard, H.T.; Bak, T.; Oudshoorn, F.W. ZigBee-Based Wireless Sensor Networks for Monitoring Animal Presence and Pasture Time in a Strip of New Grass. Comput. Electron. Agric. 2008, 61, 79–87. [Google Scholar] [CrossRef]
- Bloch, V.; Pastell, M. Monitoring of Cow Location in a Barn by an Opensource, Low-Cost, Low-Energy Bluetooth Tag System. Sensors 2020, 20, 3841. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chen, M.C. A Novel Position Estimation Method Using Accelerometer Based Error Correction. Eng. Comput. 2016, 33, 1784–1799. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Norton, T. Behaviour Recognition of Pigs and Cattle: Journey from Computer Vision to Deep Learning. Comput. Electron. Agric. 2021, 187, 106255. [Google Scholar] [CrossRef]
- Hitelman, A.; Edan, Y.; Godo, A.; Berenstein, R.; Lepar, J.; Halachmi, I. Biometric Identification of Sheep via a Machine-Vision System. Comput. Electron. Agric. 2022, 194, 106713. [Google Scholar] [CrossRef]
- Phyo, C.N.; Zin, T.T.; Hama, H.; Kobayashi, I. A Hybrid Rolling Skew Histogram-Neural Network Approach to Dairy Cow Identification System. In Proceedings of the International Conference Image and Vision Computing New Zealand, Auckland, New Zealand, 19–21 November 2018; IEEE: Auckland, New Zealand, 2018. [Google Scholar]
- Lv, F.; Zhang, C.; Lv, C. Image Recognition of Individual Cow Based on SIFT in Lαβ Color Space. MATEC Web Conf. 2018, 176, 01023. [Google Scholar] [CrossRef]
- Tiwari, A.; Sachdeva, K.; Jain, N. Computer Vision and Deep Learning- Based Framework for Cattle Monitoring. In Proceedings of the IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Uttarakhand, India, 11–13 November 2021; IEEE: Uttarakhand, India, 2021; pp. 20–25. [Google Scholar]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated Cattle Counting Using Mask R-CNN in Quadcopter Vision System. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Su, Q.; Tang, J.; Zhai, J.; Sun, Y.; He, D. Automatic Tracking of the Dairy Goat in the Surveillance Video. Comput. Electron. Agric. 2021, 187, 106254. [Google Scholar] [CrossRef]
- Su, Q.; Tang, J.; Zhai, M.; He, D. An Intelligent Method for Dairy Goat Tracking Based on Siamese Network. Comput. Electron. Agric. 2022, 193, 106636. [Google Scholar] [CrossRef]
- Bello, R.W.; Mohamed, A.S.A.; Talib, A.Z.; Olubummo, D.A.; Enuma, O.C. Computer Vision-Based Techniques for Cow Object Recognition. IOP Conf. Ser. Earth Environ. Sci. 2021, 858, 012008. [Google Scholar] [CrossRef]
- Kim, W.; Cho, Y.B.; Lee, S. Thermal Sensor-Based Multiple Object Tracking for Intelligent Livestock Breeding. IEEE Access 2017, 5, 27453–27463. [Google Scholar] [CrossRef]
- Bhole, A.; Udmale, S.S.; Falzon, O.; Azzopardi, G. CORF3D Contour Maps with Application to Holstein Cattle Recognition from RGB and Thermal Images. Expert Syst. Appl. 2022, 192, 116354. [Google Scholar] [CrossRef]
- Shelley, A.N. Monitoring Dairy Cow Feed Intake Using Machine Vision. Theses Diss. Comput. Eng. 2013, 24, 99. [Google Scholar]
- Shelley, A.N.; Lau, D.L.; Stone, A.E.; Bewley, J.M. Short Communication: Measuring Feed Volume and Weight by Machine Vision. J. Dairy Sci. 2016, 99, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloch, V.; Levit, H.; Halachmi, I. Assessing the Potential of Photogrammetry to Monitor Feed Intake of Dairy Cows. J. Dairy Res. 2019, 86, 34–39. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Saar, M.; Edan, Y.; Godo, A.; Lepar, J.; Parmet, Y.; Halachmi, I. A Machine Vision System to Predict Individual Cow Feed Intake of Different Feeds in a Cowshed. Animal 2022, 16, 100432. [Google Scholar] [CrossRef]
- Porto, S.M.C.; Arcidiacono, C.; Anguzza, U.; Cascone, G. A Computer Vision-Based System for the Automatic Detection of Lying Behaviour of Dairy Cows in Free-Stall Barns. Biosyst. Eng. 2013, 115, 184–194. [Google Scholar] [CrossRef]
- Cangar, Ö.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic Real-Time Monitoring of Locomotion and Posture Behaviour of Pregnant Cows Prior to Calving Using Online Image Analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
- Porto, S.M.C.; Arcidiacono, C.; Anguzza, U.; Cascone, G. The Automatic Detection of Dairy Cow Feeding and Standing Behaviours in Free-Stall Barns by a Computer Vision-Based System. Biosyst. Eng. 2015, 133, 46–55. [Google Scholar] [CrossRef]
- Gao, T.; Kasabov, N. Adaptive Cow Movement Detection Using Evolving Spiking Neural Network Models. Evol. Syst. 2016, 7, 277–285. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of Machine Vision for Detecting Behaviour of Cattle and Pigs. Livest. Sci. 2017, 202, 25–38. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. Accurate Detection of Lameness in Dairy Cattle with Computer Vision: A New and Individualized Detection Strategy Based on the Analysis of the Supporting Phase. J. Dairy Sci. 2020, 103, 10628–10638. [Google Scholar] [CrossRef]
- Zhao, K.; Bewley, J.M.; He, D.; Jin, X. Automatic Lameness Detection in Dairy Cattle Based on Leg Swing Analysis with an Image Processing Technique. Comput. Electron. Agric. 2018, 148, 226–236. [Google Scholar] [CrossRef]
- Noor, A.; Zhao, Y.; Koubaa, A.; Wu, L.; Khan, R.; Abdalla, F.Y.O. Automated Sheep Facial Expression Classification Using Deep Transfer Learning. Comput. Electron. Agric. 2020, 175, 105528. [Google Scholar] [CrossRef]
- Jaddoa, M.A.; Gonzalez, L.; Cuthbertson, H.; Al-Jumaily, A. Multiview Eye Localisation to Measure Cattle Body Temperature Based on Automated Thermal Image Processing and Computer Vision. Infrared Phys. Technol. 2021, 119, 103932. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Jongman, E.C. Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals 2019, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Internet of Things for Agricultural Applications: The State of the Art. IEEE Internet Things J. 2021, 8, 10973–10997. [Google Scholar] [CrossRef]
- Ahmad, N.; Ghazilla, R.A.R.; Khairi, N.M.; Kasi, V. Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications. Int. J. Signal Process. Syst. 2013, 1, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Achour, B.; Belkadi, M.; Saddaoui, R.; Filali, I.; Aoudjit, R.; Laghrouche, M. High-Accuracy and Energy-Efficient Wearable Device for Dairy Cows’ Localization and Activity Detection Using Low-Cost IMU/RFID Sensors. Microsyst. Technol. 2022, 28, 1241–1251. [Google Scholar] [CrossRef]
- Andriamandroso, A.L.H.; Lebeau, F.; Beckers, Y.; Froidmont, E.; Dufrasne, I.; Heinesch, B.; Dumortier, P.; Blanchy, G.; Blaise, Y.; Bindelle, J. Development of an Open-Source Algorithm Based on Inertial Measurement Units (IMU) of a Smartphone to Detect Cattle Grass Intake and Ruminating Behaviors. Comput. Electron. Agric. 2017, 139, 126–137. [Google Scholar] [CrossRef]
- Haley, D.B.; De Passillé, A.M.; Rushen, J. Assessing Cow Comfort: Effects of Two Floor Types and Two Tie Stall Designs on the Behaviour of Lactating Dairy Cows. Appl. Anim. Behav. Sci. 2001, 71, 105–117. [Google Scholar] [CrossRef]
GNSS | UWB | RFID | WSN | Vision | |
---|---|---|---|---|---|
Works inside barn | - | ++ | + | + | ++ |
Works in the field | ++ | - | - | + | - |
Battery life | - | + | ++ | + | n/a |
Size transponders | + | + | - | + | n/a |
Measuring welfare | 1,2,3,4 | 3,4 | 1 | 2,4 | 1,2,3,4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofstra, G.; Roelofs, J.; Rutter, S.M.; van Erp-van der Kooij, E.; de Vlieg, J. Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review. Dairy 2022, 3, 776-788. https://doi.org/10.3390/dairy3040053
Hofstra G, Roelofs J, Rutter SM, van Erp-van der Kooij E, de Vlieg J. Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review. Dairy. 2022; 3(4):776-788. https://doi.org/10.3390/dairy3040053
Chicago/Turabian StyleHofstra, Gerben, Judith Roelofs, Steven Mark Rutter, Elaine van Erp-van der Kooij, and Jakob de Vlieg. 2022. "Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review" Dairy 3, no. 4: 776-788. https://doi.org/10.3390/dairy3040053
APA StyleHofstra, G., Roelofs, J., Rutter, S. M., van Erp-van der Kooij, E., & de Vlieg, J. (2022). Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review. Dairy, 3(4), 776-788. https://doi.org/10.3390/dairy3040053