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Simple Summary: Animal monitoring normally requires procedures that are time- and
labour-consuming. The implementation of novel non-invasive technologies could be a good approach
to monitor animal health and welfare. This study aimed to evaluate the use of images and
computer-based methods to track specific features of the face and to assess temperature; respiration
rate and heart rate in cattle. The measurements were compared with measures obtained with
conventional methods during the same time period. The data were collected from ten dairy cows
that were recorded during six handling procedures across two consecutive days. The results from
this study show over 92% of accuracy from the computer algorithm that was developed to track the
areas selected on the videos collected. In addition, acceptable correlation was observed between the
temperature calculated from thermal infrared images and temperature collected using intravaginal
loggers. Moreover, there was acceptable correlation between the respiration rate calculated from
infrared videos and from visual observation. Furthermore, a low to high relationship was found
between the heart rate obtained from videos and from attached monitors. The study also showed that
both the position of the cameras and the area analysed on the images are very important, as both had
large impact on the accuracy of the methods. The positive outcomes and the limitations observed in
this study suggest the need for further research

Abstract: Precision livestock farming has emerged with the aim of providing detailed information
to detect and reduce problems related to animal management. This study aimed to develop and
validate computer vision techniques to track required features of cattle face and to remotely assess
eye temperature, ear-base temperature, respiration rate, and heart rate in cattle. Ten dairy cows were
recorded during six handling procedures across two consecutive days using thermal infrared cameras
and RGB (red, green, blue) video cameras. Simultaneously, core body temperature, respiration rate
and heart rate were measured using more conventional ‘invasive’ methods to be compared with the
data obtained with the proposed algorithms. The feature tracking algorithm, developed to improve
image processing, showed an accuracy between 92% and 95% when tracking different areas of the face
of cows. The results of this study also show correlation coefficients up to 0.99 between temperature
measures obtained invasively and those obtained remotely, with the highest values achieved when the
analysis was performed within individual cows. In the case of respiration rate, a positive correlation
(r = 0.87) was found between visual observations and the analysis of non-radiometric infrared videos.
Low to high correlation coefficients were found between the heart rates (0.09–0.99) obtained from
attached monitors and from the proposed method. Furthermore, camera location and the area
analysed appear to have a relevant impact on the performance of the proposed techniques. This
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study shows positive outcomes from the proposed computer vision techniques when measuring
physiological parameters. Further research is needed to automate and improve these techniques to
measure physiological changes in farm animals considering their individual characteristics.

Keywords: computer vision; physiological parameters; animal monitoring; imagery

1. Introduction

The livestock industry is continually seeking more sustainable systems, which implement novel
technologies that contribute to better management strategies [1]. Precision livestock farming (PLF) has
emerged as a response to the need for a regular monitoring system that provides detailed information,
allowing quick and evidence-based decisions on the animal’s needs [2]. Sound sensors, cameras, and
image analysis have been considered as part of the PLF development, which appear to be useful
non-invasive technologies that allow the monitoring of animals without producing discomfort [3–7].

Some researchers are also developing and implementing new technologies in order to achieve
automatic and less invasive techniques to monitor vital parameters such as heart rate (HR), respiration
rate (RR) and core body temperature [8–11]. These parameters have been commonly measured
through methods that require human–animal interaction, such as the use of stethoscope for HR and
RR measurement, and thermometer for core body temperature measurement [12–14]. Although these
and other contact techniques have been widely used for medical, routine and scientific monitoring
of animals, most of them are labour-intensive, can generate discomfort to animals and consequently,
they are not practical for continuous and large-scale animal monitoring [15,16]. Hence, computer
vision (CV) techniques appear as promising methods to perform non-contact measuring of one or
more physiological parameters, including temperature, HR, and RR in farm animals [17].

Thermal infrared (TIR) sensors have been used for decades in research aiming to assess skin
temperature as an indicator of health and welfare issues in farm animals [11]. The implementation of
these technologies is based on the fact that the alteration of blood flow underlying the skin generates
changes in body surface temperature, which is detected as radiated energy (photons) by TIR cameras,
and later observed as skin temperature when analysing the images [18]. This analysis allows the
selection of one or more regions of interest (ROIs), which has led to the use of these technologies to
detect signs of inflammation in certain areas of the body, or to assess the surface temperature of specific
areas, as an index to body temperature in animals [19,20].

In terms of HR measurement, a variety of less invasive techniques, such as attached monitors,
have been tested to assess HR in cattle and other farm animals. However, it has been found that
this measurement can be affected by the equipment and the measurement technique [21]. For this
reason, researchers are currently investigating computer-based techniques as a promising possibility
for a contactless way of monitoring HR on farms [22]. This interest is also promoted by the results
reported in humans, which have shown the ability to detect changes in blood flow, which allows the
measurement of HR in people by using images and computer algorithms that are based on skin colour
changes or the subtle motion that occurs in the body due to cardiac movements [23–27]. Although these
studies showed promising results, most of them agree that the main noise observed in the results are
related to motion and light conditions [25]. Some researchers such as Li et al. [28] and Wang et al. [29],
have focused on improving these methods by including algorithms for tracking the ROI and pixels,
and for illumination correction.

In terms of RR, as another important measurement used in human and animal health, the search
for new and less labour-intensive methods of assessment has grown in the last decades. Methods such
as respiratory belt transducers, ECG (electrocardiogram) morphology, and photoplethysmography
morphology have been implemented in several studies [30]. However, these methods require the
attachment of sensors, which can produce discomfort and stress in the person or animal [30,31]. Hence,
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the use of imagery and computer algorithms has increasingly been used in studies aiming to remotely
assess the RR of people and animals [5,17,30,31]. Although these studies showed promising results
when remotely measuring RR, they were only tested when the participants were motionless, or required
to count the respiration movements manually.

This study aimed to develop and validate computer vision algorithms against more traditional
measurements to measure (1) ‘eye’ and ‘ear-base’ temperature from TIR imagery, (2) RR from infrared
videos, (3) HR from RGB videos, and (4) an algorithm for feature tracking in cattle. Additional aims
were to identify the most suitable camera position and the most suitable ROI, both in terms of the
validity as well as accuracy of the proposed algorithms, to facilitate possible implementation of these
methods in an automated monitoring system on farm.

2. Materials and Methods

2.1. Study Site and Animals Description

This study was approved by The University of Melbourne’s Animal Ethics Committee (Ethics ID:
1714124.1). Data was collected during two consecutive days at the University of Melbourne’s robotic
dairy farm (Dookie, VIC, Australia) in March 2017. Ten lactating cows (Holstein Friesian) varying
in parity (2–5), average of daily milk production (32.2–42.3 kg), and liveweight (601–783 kg), were
randomly selected from the herd. These cows were placed in a holding yard the night before starting
the procedures and kept in this yard overnight during the experiment period.

2.2. Data Acquisition and Computer Vision Analysis

2.2.1. Cameras Description

Devices equipped with thermal and RGB sensors were built, allowing to simultaneously record
thermal and RGB images of the animals involved. The sensors incorporated were an infrared thermal
camera (FLIR® AX8; FLIR Systems, Wilsonville, OR. USA) and an RGB video camera (Raspberry Pi
Camera Module V2.1; Raspberry Pi Foundation, Cambridge, UK).

The FLIR AX8 Thermal Camera has a spectra range of 7.5–13 µm and accuracy of ±2% The
emissivity used in these cameras is 0.985, which has been reported as the emissivity of humans and
other mammals skin (0.98 ± 0.01; [6,32]). Thermal imaging cameras with similar characteristics have
been used in several studies to assess skin temperature in humans and animals [6,33–36]. Furthermore,
the RGB video camera used for this project was a Raspberry Pi Camera Module V2.1, which is an
8-megapixel sensor, with a rate of 29 frames per second.

In addition to the built devices, two Hero 3+ cameras (GoPro, Silver Edition v03.02®, San Mateo,
CA, USA) were attached to the milking robot to continuously record the side and front area of the
cows face while they were being milked. These cameras record RGB videos with a rate of 29 frames
per second, with a resolution of 1280 × 720 pixels. Moreover, a FLIR® ONE (FLIR Systems, Wilsonville,
OR, USA) Thermal Imaging Case attached to an iPhone® 5 (Apple Inc., Cupertino, CA, USA) was
used to record non-radiometric IR videos when animals were in the crush.

2.2.2. Feature Tracking Technique

This methodology was developed to avoid the misclassification of pixels that could later be
considered for the physiological parameters prediction. The feature tracking procedure aimed to
trace through sequential frames of a video, characteristic points over an ROI using computer vision
algorithms. The complete feature tracking methodology was integrated on a graphical user interface
built in Matlab® R2018b, which is divided into two main steps: (i) identification of features over the
ROI and ii) reconstruction of a new ROI based on the tracked point over frames.

(i) For the feature identification step, the following pattern recognition techniques are automatically
computed: the minimum eigenvalue [37], the speeded up robust features (SURF) [38], the binary robust
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invariant scalable points (BRISK) [39], the fusing points and lines for high performance tracking (FAST)
algorithm [40], a combined corner and edge detection algorithm [41], and the histograms of oriented
gradients algorithm [42]. As these techniques differ in performance and the target for feature detection,
they are automatically compared within the ROI of each specific video. After these techniques have
been evaluated, the one that allows to select the most representative features, for each case, is selected.
Some of the functions developed as part of the methodology were based on the Computer Vision
Toolbox available on Matlab® R2018b.

(ii) With the results from the previous step, the selected feature identification technique and
the selected ROI are used for tracking the points over the sequential frames, using a modified KLT
(Kanade–Lucas–Tomasi)-based algorithm [43]. This tracking procedure refreshes the selected ROI
over all the consecutive frames and set up a new ROI based on the area which better includes the new
identified points by masking (using a binary image segmentation) all the pixels which are outside of
that region (Figures 1 and 2). This new ROI is only created if the ratio between the selected point and
the new identified points is higher than 70%. Finally, the physiological parameters prediction was
applied over the frames containing only the information of interest.
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Figure 2. Stages of the feature tracking method when cameras are located next to the animal on (a) the
eye area and (b) the forehead.
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This method decreased the misclassification of pixels by increasing accuracy when analyzing
the desired area. Another advantage of this methodology is that as it is automated (not supervised),
it only requires the user input for the initial selection of the ROI and for the selection of the feature
identification technique that better represents the features of the ROI.

2.2.3. Image Analysis

Image processing was performed separately for each physiological parameter. In the case of
temperature, TIR images, obtained with FLIR AX8 cameras, were processed to extract temperature.
To automatize the processing of the thermal images, a script was developed on MATLAB® R2018b
(Mathworks Inc. Natick, MA, USA), using a software development kit (SDK) named FLIR® Atlas
SDK [44,45]. The script consisted on automatically extracting the radiometric information from the
original data and saving it into ‘.tiff and .dat’ files. In addition, a ROI was set on the images for
extracting the statistical parameters of the temperature on the specific area selected. In this study
‘eye area’ and ‘ear base’ were used as ROI to extract temperature. The selection of these two areas
was based on some reported studies, which analysed these areas when assessing temperature of farm
animals as a measurement of body temperature [46,47].

The non-radiometric infrared (IR) videos obtained with the FLIR ONE were processed through
an algorithm that was developed in Matlab® for this study, to measure the RR in the participating
cows. This algorithm calculates RR measures based on the changes in pixel intensity values detected
within the ROI (nose area) due to respiratory airflow, which indicates the inhalations and exhalations
performed by the animal during the time analysed.

For the HR analysis, RGB videos obtained with Raspberry Pi and GoPro cameras were firstly
examined and classified per cow. Once the videos of each animal were identified, they were processed
through a customized algorithm developed in Matlab® 2018b, which identifies the changes of luminosity
in the green colour channel from ROIs obtained, using the photoplethysmography principle and based
on the peak analysis of the signal obtained from luminosity over time. A second-order Butterworth
filter and a fast Fourier transformation (FFT) are performed after this signal is obtained. This process
provides HR values (BPM) every 0.5 s [26]. The ROI was tracked using a feature tracking algorithm
described above (Section 2.2.2). The areas analysed as ROI for HR assessment were the ‘eye area’,
‘forehead’ and ‘face’. This selection was based on the areas that some studies have used as ROI when
implementing computer algorithms to analyse HR in humans [17,25].

2.2.4. Data Collected

The protocol of this study was designed to compare invasively and remotely obtained data,
collected simultaneously from the same animals during six periods across two consecutive days.
The periods recorded included two different conditions (restraint within the crush and during
robotic milking).

Physiological parameters included in this study (body temperature, RR and HR) were assessed
simultaneously by a gold-standard (labelled as ‘invasive’ for the purpose of this study) and a CV
technique. The body temperature of these animals was assessed by the analysis of eye and ear-base
temperature obtained from TIR images (frame rate: 1 per second), and by vaginal temperature obtained
from temperature loggers (Thermochron®; Maxim Integrated Products, Sunnyvale, CA, USA) which
were set to record every 60 s, accommodated in a blank controlled internal drug release (CIDR; Pfizer
Animal Health, Sterling, CO, USA) device and placed into each participating cow [48]. RR was
measured using the respective CV method and by visual observations from RGB video obtained with a
Raspberry Pi Camera when cows were in the crush. These visual observations were always performed
by the same observer, who counted breathing movements during one minute. Finally, HR of cows
was measured using the proposed CV method as well as with a commercial heart rate monitor (Polar
WearLink®; Polar Electro Oy, Kempele, Finland) as the ‘invasive’ technique, which has been validated
and used in cattle in several studies [21,49,50].
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One of the built devices (including TIR and RGB cameras) was held outside the crush to record
the face of cows from the front (within 1.5 m) and next to them (within 0.5 m). Another of these devices
was attached next to the milking robot to record one side of the face of cows (within 0.5 m) during
the milking process (Due to the structure of the milking robot and the size of this device it was not
possible to place it in front of the face of cows). In addition, two GoPro cameras were attached to the
milking robot to record videos from the front and side of the face of cows (within 0.5 m). Consequently,
thermal images were obtained from the front of the animals within a distance of 1.5 m (in the crush),
and next to the animals’ face within a distance of 0.5 m (in the crush and in the milking machine).
While, RGB videos were recorded from three different positions: in front of cows within a distance of
1.5 m, in front of cows within a distance of 0.5 m (in the milking machine), and alongside within a
distance of 0.5 m (in the crush and in the milking machine). In the case of non-radiometric IR videos,
these were obtained in front of the animals from a distance of 1.5 m (in the crush).

2.2.5. Experiment Procedures

As the first procedure, the group of cows was drafted to a yard that was connected to the crush
via a raceway, from where cows were individually moved into the crush. In this position, a patch
on the left anterior thorax was shaved, which has been considered as the correct place to measure
heart rate in bovines [51,52]. Then, the heart rate monitor was placed using an elastic band around the
thorax of the cow, and lubricated with gel (Figure 3). When the HR monitor was attached, the head of
the cow was restraint in the head bail for 4 min. The recording was performed in front of the cow’s
face the first 3 min, and by the side of the cow’s head during the last minute (Figure 4a,b). After this
period, the cow was released from the crush, allowing her to visit the milking robot to be milked.
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Figure 4. The various camera positions used; (a) the developed device is held in front of the animals,
within a distance of 1.5 m, (b) the developed device is held next to the animals, within a distance of 0.5
m, (c) developed devices are located next to the milking robot, within a distance of 0.5 m and (d) GoPro
cameras are located in the milking robot, within a distance of 0.5 m.
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Cameras were also placed in the milking robot in order to record videos and IR images of the
face of these cows when they were being milked (duration 6–11 min) (Figure 4c,d). When the cow
finished the milking process, she was moved to the crush again in order to record images similarly to
the previous time. Once this recording was finished, the HR monitor was removed and the cow was
released on pasture with the rest of the herd during the afternoon. These procedures were performed
during the morning (7:00–11:00) in two consecutive days. Non-radiometric IR videos of ten cows were
recorded for one minute during the first crush procedure on the first day of the experiment (due to
technical difficulties, it was not possible to record during the following procedures). Finally, the CIDR
was removed at the end of the last day at the time when the Polar HR monitor was removed.

2.3. Statistical Analysis

The accuracy of the feature tracking method was evaluated by measuring the number of frames
in which this algorithm correctly tracked the desired area over the total frames processed.

Once the images were processed for the assessment of physiological parameters, statistical analyses
were performed using Minitab® Statistical Software 18 (Minitab Pty Ltd., Sydney NSW, Australia).
Firstly, normality tests were performed in order to check the distribution of the data obtained. After
that, Pearson correlation was calculated to measure the strength of the linear association between
each remotely measured parameter (surface temperature, RR and HR) with its respective parameter
measured by an ‘invasive’ method (intravaginal temperature loggers, visual observations for RR
assessment, and Polar HR monitors). In addition, a linear regression analysis was performed to
determine whether remotely measured parameters could accurately predict invasively measured
parameters. In terms of temperature and HR, correlations were firstly made with the set of data
obtained from the whole group and considering the average of every minute recorded as well as
considering the average obtained for each handling procedure (1st crush, milking and 2nd crush).
Then, the correlation analyses were performed per cow. From these last correlations, the average and
standard deviation (SD) of the correlation coefficients obtained from each setting (type of camera;
camera position; camera distance; area of face analysed) were calculated and presented as ‘mean ± SD’.

Furthermore, the differences between the parameters obtained from both methods were calculated.

3. Results

The data obtained from ‘invasive’ and remote methods were compared within the group and
within individual animals.

Firstly, the accuracy of the feature tracking algorithm was calculated. Table 1 displays its level
of accuracy when tracking different areas of a cows’ head. This method showed a high accuracy
tracking the three areas analysed (92%–95%). Moreover, it improved in accuracy as the size of the area
tracked increased.

Table 1. Analysis of the accuracy of the tracking method for each feature (eyes, forehead, face).

Tracked Feature Number of Frames
Analysed

Number of Frames
Correctly Tracked Accuracy (%)

Eyes 134,966 124,207 92.0
Forehead 134,966 124,526 92.3

Face 125,715 118,813 94.5

When comparing intravaginal temperatures with eye temperatures, eye temperature had a larger
variability than the vaginal temperature (Figure 5a). Furthermore, Figure 5b shows the trend of
intravaginal and eye temperature, which shows that eye temperature was permanently lower than
intravaginal temperature.
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Figure 5. Comparison between intravaginal temperature (Invasive Temperature) and eye temperature
obtained from TIR images (Remote Temperature) using (a) boxplots and (b) a trend graph. For the
measurement of remote temperature, the thermal infrared camera (FLIR® AX8) was located beside the
animals within a distance of 0.5 m. Data used was the average for each cow within a handling period
(milking or crush). N = 60. On a boxplot (a), asterisks (*) denote outliers.

When the analysis among temperatures was performed including all temperature data obtained
from the whole group, eye temperature extracted from images that were recorded on the side of cows
within 0.5 m of distance, showed a high correlation with intravaginal temperature (r = 0.74; p < 0.001;
Figure 6).
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Figure 6. Regression analysis of the relationship between (i) intravaginal temperature (Invasive
Temperature) and (ii) eye temperature obtained from thermal infrared images (Remote Temperature).
For the measurement of remote temperature, the thermal infrared camera (FLIR® AX8) was located
beside the animals within a distance of 0.5 m. The solid line shows the line of best fit, the dotted lines
show the 95% and the equation and associated r and p value are shown. Each point represents an
average for the animal within a handling period (milking or crush). N = 60.

The temperature data were then analysed per cow, where correlations were higher for the
analysis that used the average of temperature obtained during each handling period (Table 2, Table 3),
compared to when the analysis was performed considering the average temperature obtained for each
minute recorded. In addition, the highest correlations between invasively and remotely obtained
temperatures were observed when ‘eye area’ was selected as the ROI during the processing of
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TIR images (r = 0.64–0.93), compared to the correlation obtained when ‘ear-base’ was used as ROI
(r = 0.33–0.70).

Individual correlations between eye temperature and intravaginal temperature were higher
when images were recorded on the side of the animal within a distance of 0.5 m (r = 0.8 ± 0.06
(mean ± SD); p < 0.01), than when images were obtained from the front. On the other hand, remote
temperatures obtained from the ear base showed a moderate correlation with intravaginal temperature
(r = 0.54 ± 0.15 (mean ± SD); p > 0.05) when comparing the temperature averages obtained during
each handling period.

Table 2. Pearson correlation coefficients (r) between the core temperature of individual animals obtained
from intravaginal loggers and temperature measured using thermal infrared images, analyzing different
areas on the animal (eye area, ear base) and different camera positions relative to the animal (front, side,
1.5 m, 0.5 m). Data used is the average for the animal within a period of handling (six handling periods
per animal).

Invasive
Method

Computer-Vision Method Mean Correlation
Coefficient (r) *

Range (r) p-Value **
Camera Position Distance Analysed Area

Thermochron FLIR AX8 Front 1.5 m Eye area 0.77 ± 0.12 0.64–0.93 <0.01
Thermochron FLIR AX8 Side 0.5 m Eye area 0.8 ± 0.06 0.74–0.89 <0.01
Thermochron FLIR AX8 Side 0.5 m Ear base 0.54 ± 0.15 0.33–0.70 <0.05

* Correlation coefficients are presented as mean ± SD; ** p-value are the highest observed in each category.

Table 3. Pearson correlation coefficients (r) within individual animals, between the core temperature
obtained from intravaginal loggers and, temperature measured using thermal infrared images, analyzing
different areas on the animal (eye area, ear base) and different camera positions relative to the animal
(front, side, 1.5 m, 0.5 m). The data used were the average over one minute, for each animal, within all
the handling periods (milking and crush).

Invasive
Method

Computer-Vision Method Mean Correlation
Coefficient (r)*

Range (r) p-Value**
Camera Position Distance Analysed Area

Thermochron FLIR AX8 Front 1.5 m Eye area 0.64 ± 0.18 0.42–0.83 <0.05
Thermochron FLIR AX8 Side 0.5 m Eye area 0.68 ± 0.17 0.47–0.86 <0.05
Thermochron FLIR AX8 Side 0.5 m Ear base 0.43 ± 0.23 0.33–0.67 <0.05

* Correlation coefficients are presented as mean ± SD; ** p-value are the highest observed in each category.

The absolute differences between ‘invasive’ and remote temperatures were analysed per individual
animal. Eye temperature from front images was identified to be on average 2.4 ± 0.8 ◦C (mean ± SD)
lower than the intravaginal temperature, while eye temperature extracted from images recorded on the
side of animals was on average 1.1± 0.8 ◦C (mean±SD) lower than intravaginal temperature. In addition,
ear-base temperature was on average 3.1 ± 0.7 ◦C (mean ± SD) lower than intravaginal temperature.

In the case of RR assessment, the ten observations obtained from each method (‘invasive’ and
remote method) during the first time cows were restrained in the crush were compared through linear
regression, and showed a high correlation (r = 0.87; p < 0.001; Figure 7). The RR parameters obtained
from CV techniques were on average 8.4 ± 3.4 (mean ± SD) breaths per minute lower than the RR
parameters obtained by visual observations.
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Figure 7. Regression analysis of the relationship between respiration rate (RR) obtained from visual
observations (Invasive RR) and the respiration rate remotely obtained (remote RR). For the measurement
of remote RR, the camera (FLIR® ONE) was located in front of the animal within a distance of 1.5 m,
while the animal was in the first crush. The solid line shows the line of best fit, the dotted lines show
the 95% and the equation and associated r and p-value are shown. Each point represents an average for
the animal while in the crush. N = 10.

Following this analysis, the HR data were evaluated. Due to inconsistences observed in some of
the Polar monitors, the HR data obtained from two animals were not used in this study. The exclusion
of this data was based on the large standard deviation (SD) observed. Hopster and Blokhuis [53], and
Janzekovic et al. [50] reported a SD of 1.44–6.39 bpm and 6.27–13.92 bpm from the HR of cows obtained
from ‘Polar® Sport Testers; therefore, it was decided that data would be excluded from the analysis
when it displayed a SD over 20 bpm.

As Figure 8 shows, the HR obtained invasively had a higher variability than the remote
measurements. However, similar medians were obtained from both methods (80.9 and 81.9, respectively).
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Figure 8. Data distribution for heart rate (HR, beats per minute, BPM) obtained from Polar HR monitors
(Invasive HR) and from videos recorded with a Raspberry-pi camera, with the camera in the front
within a distance of 1.5 m, while the animal was in the crush, and analysing the ‘eye area’ (Remote HR).
Each data point was an average for the animal across all crush handling periods. N = 32.

No correlations (p > 0.05) were found between heart rate recorded by the Polar HRM and analysed
from the RGB cameras when the analysis was performed including all HR data obtained from the
whole group (Figure 9).
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Figure 9. Regression analysis of the relationship between heart rate (HR) obtained from Polar HR
monitors and from videos recorded with a Raspberry-pi camera located in front of the animal, within a
distance of 1.5 m, while the animal was in the crush, and analysing the ‘eye area’. The solid line shows
the line of best fit, the dotted lines show the 95% and the equation and associated r and p-value are
shown. Each point represents an average for the group within the each crush handling period. N = 32.

The correlation between methods was then compared within the animal, for the average for each
handling period (Table 4), and within the animal, using the average heart rate for each minute across
all handling periods (Table 5). The highest correlation was found when comparing the HR average
obtained using both methods during each handling procedure (Table 4), in comparison to the analysis
that compared the HR average obtained per minute recorded (Table 5). In addition, the highest positive
correlations between HR obtained invasively and remotely were observed when ‘eye area’ was selected
as the ROI during the processing of RGB videos obtained with Raspberry Pi and GoPro cameras (r
= 0.75–0.89; Table 4, Table 5). The mean of the individual correlations was higher when RGB videos
were recorded with Raspberry Pi Cameras located in front of the animal within a distance of 1.5 m
(r = 0.89 ± 0.09 (mean ± SD); p < 0.05; Table 4). On the other hand, the lowest mean of individual
correlations, which was not significant, was observed when the ‘face’ was selected as the ROI (r =

0.16 ± 0.2 (mean ± SD); p > 0.05; Table 4).

Table 4. Pearson correlation coefficients (r) between heart rate measurements of individual animals
obtained from Polar monitors and, heart rate measured using computer vision techniques using
different cameras (GoPro, Raspberry Pi), different areas on the animal (eye area, forehead, face) and
with cameras located within different distances from the animal (1.5 m, 0.5 m). Data are the average for
the animal within each period of handling (six handling periods per animal).

Invasive
Method

Computer-Vision Method Mean Correlation
Coefficient (r) *

Range (r) p-Value **
Camera Position Distance Analysed Area

Polar monitor RaspberryPi Front 1.5 m Eye area 0.89 ± 0.09 0.72–0.99 <0.05
Polar monitor RaspberryPi Front 1.5 m Forehead 0.62 ± 0.23 0.32–0.90 <0.05
Polar monitor RaspberryPi Front 1.5 m Face 0.16 ± 0.2 −0.11–0.39 >0.05
Polar monitor RaspberryPi Side 0.5 m Eye area 0.78 ± 0.04 0.74–0.84 <0.01
Polar monitor RaspberryPi Side 0.5 m Forehead 0.71 ± 0.18 0.53–0.89 <0.05
Polar monitor GoPro Side 0.5 m Eye area 0.75 ± 0.14 0.55–0.92 <0.05
Polar monitor GoPro Front 0.5 m Forehead 0.65 ± 0.08 0.58–0.76 <0.05

* Correlation coefficients are presented as mean ± SD; ** p-value are the highest observed in each category.
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Table 5. Pearson correlation coefficients (r) between heart rate measurements of individual animals,
obtained from Polar monitors and, heart rate measured using computer vision techniques using
different cameras (GoPro, Raspberry Pi), different areas on the animal (eye area, forehead, face) and
with cameras located within different distances from the animal (1.5 m, 0.5 m). The data used were the
average over one minute, within all the handling periods (milking and crush).

Invasive
method

Computer-Vision Method Mean Correlation
Coefficient (r) *

Range (r) p-Value **
Camera Position Distance Analysed Area

Polar monitor RaspberryPi Front 1.5 m Eye area 0.83 ± 0.15 0.55–0.99 <0.05
Polar monitor RaspberryPi Front 1.5 m Forehead 0.78 ± 0.19 0.41–0.99 <0.05
Polar monitor RaspberryPi Front 1.5 m Face 0.2 ± 0.23 −0.1–0.4 >0.05
Polar monitor RaspberryPi Side 0.5 m Eye area 0.75 ± 0.19 0.46–0.96 <0.01
Polar monitor RaspberryPi Side 0.5 m Forehead 0.77 ± 0.20 0.39–0.98 <0.05
Polar monitor GoPro Side 0.5 m Eye area 0.77 ± 0.11 0.61–0.87 <0.01
Polar monitor GoPro Front 0.5 m Forehead 0.79 ± 0.18 0.50–0.99 <0.05

* Correlation coefficients are presented as mean ± SD; ** p-value are the highest observed in each category.

4. Discussion

Although changes of physiological parameters have largely been used to detect stress and illness
in animals, their assessment still includes some invasive methods that can elevate stress and pain
in animals, affecting results and probably animal wellbeing, as well as being time-consuming and
labour-intensive. Computer vision techniques could assist animal monitoring and provide valuable
information for animal wellbeing assessment. Developed computer algorithms were evaluated to track
specific features of cows on the RGB videos, measure surface temperature, RR and HR in cattle.

Animal recognition and tracking is an area of investigation that has become relevant due its
contribution to the development of automatic animal monitoring systems [54,55]. This study developed
and implemented a feature tracking algorithm in order to improve image processing. This algorithm
showed great accuracy when tracking three different areas of the face of the cow (92%–95%). This
algorithm had a similar accuracy to the method that Taheri and Toygar [56] proposed to detect and
classify animal faces from images (95.31%). However, their method was not applied in moving images.
Furthermore, the developed algorithm showed a higher accuracy than the accuracy reported by
Jaddoa et al. [57], who tracked the eyes of cattle from TIR images (68%–90% of effectiveness) and was
similar to the average accuracy shown by Magee [58], who classified cows from videos by the mark in
their body (97% accuracy average).

In terms of the temperatures obtained invasively and remotely during this study, they were
compared in order to evaluate the performance of thermal imagery to detect temperature changes in
cattle. Following what was observed from the HR analysis of the current study and the observations
reported by Hoffmann et al. [6], the comparison between methods was carried out with the data
obtained from the whole group, as well as with each cow’s individual temperatures. The current
study shows a better performance from the measurements of eye temperature than from ear-base
temperature, which is supported by several studies that have used eye temperature of animals with
positive outcomes [11,59,60]. The correlation coefficients resulted in this study when comparing
vaginal and eye temperatures (r = 0.64–0.80) are higher than the correlation coefficient showed by
George et al. [11] (r = 0.52) and Martello et al. [61] (r = 0.43) when compared with vaginal and rectal
temperature of cattle, respectively. However, ear-base temperature may be a useful measure when the
images are obtained from above, and the eye area is not visible [62]. This has been observed in some
studies, where ear-base appeared to be a useful measure when assessing changes of temperature in
pigs [19,47].

The correlation between ‘invasive’ and remote temperature measurement was higher when the
analysis was run per individual. This can be related to the individual effects, including the individual
changes and the level of reactivity to stimuli of each animal, mentioned by Marchant-Forde et al. [63]
and Hoffmann et al. [6]. In addition, it is hypothesized that the higher correlation observed when the
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analysis was performed with the mean temperature obtained within a handling period is related to a
lower sensitivity to temperature changes from the vaginal loggers compared to the sensitivity from
thermal imagery. Related to this, George et al. [11] argued that the relationship between temperatures
obtained from vaginal loggers and TIR images could be affected by the sampling frequency and
sensitivity of the techniques. In the case of the current study, the difference of sampling frequency
between the temperature loggers (one recording every minute) and the thermal cameras (one image
every second) could have had an impact on the correlations obtained. In addition, Stewart et al. [64]
claimed that TIR imagery is very sensitive, detecting photons that are emitted in substantial amounts
even when there are small changes of temperature in animals, explaining why remotely obtained
temperatures seemed to be more sensitive to changes than the temperatures obtained by intravaginal
loggers. Furthermore, some researchers have observed that in contrast to intravaginal or rectal
temperature, eye temperature appears to decrease immediately after a stressful situation, which is
followed later by an increase [59]. Although this decrease was not observed in this study, it could
have occurred when animals were being moved to the holding yard just before the crush procedure.
This initial decrease and other variabilities of surface temperature can also be due to the natural
thermoregulatory mechanism of animals, which can modify the flow of blood through the skin as an
adaptative response to changes in ambient temperature, illness and stress among others [65,66].

Furthermore, the results from this study show that a shorter distance between the animal and the
thermal cameras results in a more accurate assessment of eye temperature. Apart from the correlation
being higher between vaginal loggers and TIR imagery when thermal cameras are located on the side
of the animal within 0.5 m of distance, the difference between these measurements is lower than when
these images are recorded within 1.5 m of distance (1.1 ± 0.8 and 2.4 ± 0.8, respectively). Differences
of performance dependent on distance from subject and camera location have been also observed by
Church et al. [60] and Jiao et al. [67], who pointed out the importance of a correct and constant camera
location to obtain consistent and accurate measurements from TIR images. Similarly to the current
results, Church et al. [60] observed a better performance of TIR imagery when the eye-camera distance
was up to 1 m.

Due to the effect that the external conditions and the physiological status of animals have on the
temperatures obtained from TIR images, it is important to consider that variations can be observed in
the relationship between core body temperature and surface temperature.

As RR is another relevant parameter for animal monitoring, research is being carried out in order
to develop accurate and practical methods to assess it. This study showed positive results that could
open the opportunity for further research and implementation of TIR imagery as a remote technique to
assess RR of animals. Researchers, such as Stewart et al. [31] have also investigated the potential of
TIR imagery to measure RR in cattle. Although they used radiometric IR videos to observe the changes
around cows’ nostrils and manually counted their RR, while this study implemented non-radiometric
IR videos and a developed algorithm to semi-automatically count cows’ RR, both studies observed
good agreement between the proposed methods and visual observation. In addition, both studies
showed similar differences between the RR means obtained from compared methods (2.4–8.4 and
8.4 ± 3.4 breaths per minute, respectively). However, Stewart et al. [31] reported that respiration rates
from IR images were overestimated when compared to the RR obtained from visual observations,
while the present study showed that the respiration rates from IR images were underestimated. These
results suggest a promising opportunity to continue the research focused on the improvement of CV
techniques based on TIR to automatically assess RR in animals.

The evaluation of HR parameters showed a larger variability in the measurements obtained from
the Polar monitors (range: 66–132 bpm), in comparison with the variability observed from the HR
remotely obtained (range: 75–102 bpm). These variabilities were similar to what has been observed in
other studies. For instance, Janzekovic et al. [50] observed a range of 60–115 bpm from Polar monitors
that measured HR of cows during several milking periods. In addition, Wenzel et al. [49] observed a
range of 70–103 bpm when measuring HR in dairy cows before and during being milked. However, this
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difference of variability between remotely and invasively obtained HR differs from the results obtained
by Balakrishnan et al. [68], who observed a similar distribution of the HR of humans, when comparing
the measurements obtained from ECG and RGB videos. The difference of variability between methods
and the narrow range of HR obtained from the proposed CV technique, could indicate that further
research is needed to adjust this method to the specific characteristics of cattle.

As Janzekovic et al. [50] suggested, the changes of HR parameters observed in this study appeared
to be greatly influenced by the individual response of the animal. This could indicate that measuring
HR changes of individuals could be a more precise assessment than only measuring HR per se.
Furthermore, as Hopster and Blokhuis [53] identified, the performance of Polar monitors appeared to
differ. Taking this into consideration, the comparison between methods was carried out per animal.
From this analysis, the highest correlation coefficient resulted from the comparison between the
‘invasive’ and remote HR measurements (r = 0.89 ± 0.09; mean ± SD) and was slightly lower than
the correlation observed by Takano and Ohta [9], who reported a correlation coefficient of 0.90 when
comparing the human HR provided by pulse oximeters and the HR extracted by CV techniques that
identified the change of brightness within the ROI (cheek). However, it was higher than the correlation
reported by Cheng et al. [69] when evaluating computer algorithms to assess human HR from RGB
videos (r = 0.53).

Some limitations were encountered during the evaluation of HR, which lead to recommendations
for improvements in further research. Firstly, similarly to what some authors have reported [25,69],
the light conditions and excessive animal motion could have had an impact on the current results.
Moreover, as the proposed method involves the detection of brightness changes within the pixels of
the ROI, it is suspected that the variation in colour in faces of cows could lead to artefacts in the HR
assessment. Considering this, further research is suggested to adjust this method to the different colours
and combination of colours present in cows. Secondly, Polar monitors have shown some inconsistency
in their performance when used on cattle, which led to some noise in their HR measurements. Similar
issues were reported by other researchers, who mentioned that monitors performance was affected by
electrodes position and animals movement [53,63]. Marchant-Forde et al. [63] also found a delay in
the HR changes observed on the monitors data, compared to the HR changes showed by the ECG,
which had a slight effect on the correlation between methods. They also observed that the correlation
between methods was greatly dependent on individual animal effects. All these factors could explain
why the present study showed better correlations between Polar monitors and computer vision heart
rates when the analysis was performed by handling period instead of by minute, and per individual
animal instead of the whole group of animals.

A large number of studies in humans and some studies in animals suggested the potential
of computer vision techniques to perform several tasks that can contribute to human and animal
monitoring. This study shows a promising potential for computer vision techniques to monitor
changes in physiological parameters of cattle and other animals, promoting further research focused on
improving these techniques to generate useful tools for the assessment of animal health and welfare.

5. Conclusions

This study involved the development and validation of computer vision techniques in order to
evaluate the potential of remotely sensed data (TIR and RGB imagery) for assessing heart rate, eye
and ear-base temperature, and respiration rate in cattle. Although some limitations were identified
during the comparison of ‘invasive’ and remote methods, the methods evaluated showed the ability
to detect changes in physiological parameters in individual animals. These techniques could lead
to the development of useful methods to constantly monitor farm animals and alert any relevant
physiological changes on them. Nevertheless, more research is needed to investigate the feasibility
of implementing these methods on a larger scale and to decrease the impact that environmental and
animal factors have on these measurements.



Animals 2019, 9, 1089 15 of 18

Author Contributions: Conceptualization, F.R.D., E.C.J. and M.J.-C.; methodology, M.J.-C., E.C.J., S.F., F.R.D.,
R.D.W. and T.P; software, S.F. and T.P.; formal analysis, M.J.-C.; investigation, M.J.-C.; resources, F.R.D.; data
curation, M.J.; writing—original draft preparation, M.J.; writing—review and editing, M.J.-C., E.C.J., S.F., F.R.D
and R.D.W.; supervision, S.F., E.C.J, F.R.D. and R.D.W.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the Australian Government through the Australian Research
Council (Grant number IH120100053). Maria Jorquera-Chavez acknowledge the support from the scholarship
funded by the CONICYT PFCHA/Beca de Doctorado en el Extranjero Becas Chile,/2016 – 72170291.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tullo, E.; Finzi, A.; Guarino, M. Environmental impact of livestock farming and precision livestock farming
as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [CrossRef] [PubMed]

2. Norton, T.; Berckmans, D. Engineering advances in precision livestock farming. Biosyst. Eng. 2018, 173, 1–3.
[CrossRef]

3. Matthews, S.G.; Miller, A.L.; Plötz, T.; Kyriazakis, I. Automated tracking to measure behavioural changes in
pigs for health and welfare monitoring. Sci. Rep. 2017, 7, 17582. [CrossRef] [PubMed]

4. Tscharke, M.; Banhazi, T.M. A brief review of the application of machine vision in livestock behaviour
analysis. Agrárinformatika/J. Agric. Informa. 2016, 7, 23–42.

5. Barbosa Pereira, C.; Kunczik, J.; Zieglowski, L.; Tolba, R.; Abdelrahman, A.; Zechner, D.; Vollmar, B.;
Janssen, H.; Thum, T.; Czaplik, M. Remote welfare monitoring of rodents using thermal imaging. Sensors
2018, 18, 3653. [CrossRef] [PubMed]

6. Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Heuwieser, W.; Berg, W.
Monitoring the body temperature of cows and calves using video recordings from an infrared thermography
camera. Vet. Res. Commun. 2013, 37, 91–99. [CrossRef] [PubMed]

7. Van Hertem, T.; Lague, S.; Rooijakkers, L.; Vranken, E. Towards a sustainable meat production with precision
livestock farming. In Proceedings of the Food System Dynamics, Innsbruck-Igls, Austria, 15–19 February
2016; pp. 357–362.

8. Vainer, B.G. A novel high-resolution method for the respiration rate and breathing waveforms remote
monitoring. Ann. Biomed. Eng. 2018, 46, 960–971. [CrossRef]

9. Takano, C.; Ohta, Y. Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 2007, 29, 853–857.
[CrossRef]

10. Strutzke, S.; Fiske, D.; Hoffmann, G.; Ammon, C.; Heuwieser, W.; Amon, T. Development of a noninvasive
respiration rate sensor for cattle. J. Dairy Sci. 2019, 102, 690–695. [CrossRef]

11. George, W.; Godfrey, R.; Ketring, R.; Vinson, M.; Willard, S. Relationship among eye and muzzle temperatures
measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and
cattle. J. Anim. Sci. 2014, 92, 4949–4955. [CrossRef]

12. Andrade, O.; Orihuela, A.; Solano, J.; Galina, C. Some effects of repeated handling and the use of a mask on
stress responses in zebu cattle during restraint. Appl. Anim. Behav. Sci. 2001, 71, 175–181. [CrossRef]

13. Selevan, J. Method and Apparatus for Determining Heart Rate. U.S. Patent Application No. 10/859,789,
3 June 2004.

14. Vermeulen, L.; Van de Perre, V.; Permentier, L.; De Bie, S.; Geers, R. Pre-slaughter rectal temperature as an
indicator of pork meat quality. Meat Sci. 2015, 105, 53–56. [CrossRef] [PubMed]

15. Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res.
2017, 12, 15–29. [CrossRef]

16. Pastell, M.; Kaihilahti, J.; Aisla, A.-M.; Hautala, M.; Poikalainen, V.; Ahokas, J. A system for contact-free
measurement of respiration rate of dairy cows. Precis. Livest. Farm. 2007, 7, 105–109.

17. Zhao, F.; Li, M.; Qian, Y.; Tsien, J.Z. Remote measurements of heart and respiration rates for telemedicine.
PLoS ONE 2013, 8, e71384. [CrossRef]

18. Rocha, L.M. Validation of Stress Indicators for the Assessment of Animal Welfare and Prediction of Pork
Meat Quality Variation at Commercial level. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2016.

http://dx.doi.org/10.1016/j.scitotenv.2018.10.018
http://www.ncbi.nlm.nih.gov/pubmed/30373053
http://dx.doi.org/10.1016/j.biosystemseng.2018.09.008
http://dx.doi.org/10.1038/s41598-017-17451-6
http://www.ncbi.nlm.nih.gov/pubmed/29242594
http://dx.doi.org/10.3390/s18113653
http://www.ncbi.nlm.nih.gov/pubmed/30373282
http://dx.doi.org/10.1007/s11259-012-9549-3
http://www.ncbi.nlm.nih.gov/pubmed/23264091
http://dx.doi.org/10.1007/s10439-018-2018-6
http://dx.doi.org/10.1016/j.medengphy.2006.09.006
http://dx.doi.org/10.3168/jds.2018-14999
http://dx.doi.org/10.2527/jas.2014-8087
http://dx.doi.org/10.1016/S0168-1591(00)00177-5
http://dx.doi.org/10.1016/j.meatsci.2015.03.007
http://www.ncbi.nlm.nih.gov/pubmed/25805321
http://dx.doi.org/10.1016/j.sbsr.2016.11.004
http://dx.doi.org/10.1371/journal.pone.0071384


Animals 2019, 9, 1089 16 of 18

19. Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A
review. Acta Vet. Scand. 2015, 57, 5. [CrossRef]

20. Alsaaod, M.; Schaefer, A.; Büscher, W.; Steiner, A. The role of infrared thermography as a non-invasive tool
for the detection of lameness in cattle. Sensors 2015, 15, 14513–14525. [CrossRef]
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