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Abstract: Several studies have suggested that precision livestock farming (PLF) is a useful tool for
animal welfare management and assessment. Location, posture and movement of an individual are
key elements in identifying the animal and recording its behaviour. Currently, multiple technologies
are available for automated monitoring of the location of individual animals, ranging from Global
Navigation Satellite Systems (GNSS) to ultra-wideband (UWB), RFID, wireless sensor networks
(WSN) and even computer vision. These techniques and developments all yield potential to manage
and assess animal welfare, but also have their constraints, such as range and accuracy. Combining
sensors such as accelerometers with any location determining technique into a sensor fusion system
can give more detailed information on the individual cow, achieving an even more reliable and
accurate indication of animal welfare. We conclude that location systems are a promising approach
to determining animal welfare, especially when applied in conjunction with additional sensors, but
additional research focused on the use of technology in animal welfare monitoring is needed.

Keywords: PLF; dairy cows; cattle; location; animal welfare; GNSS; UWB; RFID; WSN; computer
vision; data science; multi-sensing

1. Introduction

Since the beginning of this century, the general public has become more concerned
with animal welfare and a growing number of European consumers now believe that
welfare standards in livestock production should be improved [1,2]. This concern also
translates to consumer purchase decisions and consumers are willing to pay a premium
for credence attributes of animal welfare in beef and dairy products of up to 19 and 31%,
respectively [3].

Animal welfare can be defined in several ways. The Five Freedoms, as first suggested
by the Brambell Committee [4] and further developed by the British Farm Animal Welfare
Council (FAWC), have been regarded as a standard for animal welfare for over half a
century. Animals should have freedom from hunger and thirst, discomfort, pain, injuries
or disease, freedom to express normal behaviour, and freedom from fear and distress [5].
In a large EU-funded research project animal welfare was later redefined as the four
principles of Welfare Quality®: good housing, good health, good nutrition, and appropriate
behaviour [6]. More recently, the Five Domains Model for animal welfare assessment,
which was originally formulated in 1994 by Mellor [7] to facilitate structured, systematic,
comprehensive, and coherent animal welfare assessments, is also often used. This model
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has already been updated several times to embrace scientific progress in ideas on animal
welfare [8]. The Five Domains Model has a significant focus on subjective experiences,
known as affects, which collectively contribute to an animal’s overall welfare state [9].
Based on these animal welfare frameworks, protocols have been developed to measure,
for instance, cattle welfare [10]. However, these extensive assessment protocols have
proven to be time-consuming and therefore costly, which limits their potential for practical
application [11–13].

In recent years, several researchers have pointed out the potential of precision livestock
farming (PLF) for animal welfare management and assessment [14–22]. However, no system
exists yet that can provide the broad, multidimensional integration that is required to give
a complete assessment of the welfare of any species, including cattle [17]. The automated
monitoring of cattle welfare through technology has the potential to reduce the labour
requirements and make the assessment more reliable by utilising continuous, real-time
monitoring. These systems provide the farmer with more information on their animals,
possibly resulting in higher production efficiency and improved animal welfare [14,17].

Automated monitoring and managing of individual cows start with recognizing the
animal and its behaviour. Location, posture, and movement of the cow are key elements
in this process. Multiple technologies are now available for the automated monitoring
of the location of individual animals. These techniques, ranging from global positioning
systems (GPS) to ultra-wideband (UWB), Bluetooth and even computer vision, yield the
potential to manage and assess animal welfare. The location of a cow in a functional
area, for instance, is closely related to the activity of the animal, e.g., feeding, lying, and
drinking (basic needs) and thus location can be used to infer its behavioural budget [23,24].
Deviations from predetermined behavioural patterns in turn might be an indicator of
disease or compromised welfare [25–27]. In addition, social relations can be inferred
when comparing locations of group members in relation to each other [28,29]. However,
each location determining technology has its constraints, such as range and accuracy, and
might not have the same potential for determining animal welfare in every situation, e.g.,
indoor vs. outdoor. This review aims to provide an overview of the location determining
techniques used for cattle and their potential for managing and assessing animal welfare.
The different techniques and approaches currently applied for determining animal location
will be discussed and the potential of these techniques for animal welfare management and
assessment will be reviewed.

2. Location Determining Techniques
2.1. Global Navigation Satellite Systems (GNSS)

The Global Navigation Satellite Systems (GNSS) rely on radio signals from specialized
satellites available at the given time of positioning. GNSS, such as the global positioning
system (GPS), have been used for over 30 years to track domestic animals [30]. They
have been used by ecologists to track and monitor the behavioural ecology of free-ranging
animals [31,32], but also for monitoring cattle movement in the field [33,34]. GNSS works
well outdoors when there is an unobstructed line of sight, although radio signal attenuation
from walls causes standard GNSS receivers to perform poorly in indoor environments [35].
However, new technologies that enhance and/or repeat the GNSS signal indoors might
have the potential to enhance indoor GNSS performance [36,37]. One of the concerns
with poor signal strength is the inherent GNSS error when cows are inactive, which may
overestimate daily travel by cattle by as much as 15% [38].

In general, when GNSS collars are used in cattle [39] they appear to have little to no
effect on their behaviour [30]. Schleppe et al. [40] experimented with a GNSS ear tag; due
to weight restrictions and consequently battery size, run-time was insufficient for practical
applications. When using GNSS, the sampling frequency, which is often a trade-off with
battery life, should be considered carefully since longer intervals may propagate flawed
spatial interpretations [41]. When automatically classifying cattle behaviour, the data are
commonly segmented using a fixed window size for feature extraction. However, a fixed
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window size might not always represent one single behaviour; thus, variable window sizes
for feature extraction may lead to enhanced behaviour recognition [42].

For the management of animals in extensive grazing systems, it is suggested that
monitoring grazing distribution via livestock GNSS trackers can, in some cases, improve
stocking rate adjustment calculations [43]. Furthermore, GNSS data can give more insight
into the relationship between cattle behaviours and pasture characteristics [44–48], which
could, in turn, inform the development of management strategies to modify cattle distri-
bution in the field, such as the strategic placement of water, shade and mineral points to
decrease overgrazing and nutrient accumulation at resting sites [47]. In addition, social
associations as monitored by GNSS data among individual cows may provide some insight
into cattle grazing patterns, forage utilization and availability [49].

The detection of potential health issues such as lameness is possible when considering
the modified exploratory dynamics of lame cows based on GNSS data in combination
with accelerometers [50]. In combination with a birthing sensor, GNSS information can
provide useful information about the location of calving events in the field, allowing the
farmer to reduce potential injury to the calf caused by the mother or by environmental
factors [51]. The spatial behaviour of cows and their calves can also help understand their
behaviour in extensive grazing systems with potential applications to improve calf survival
and performance [52]. Herd social structure based on GNSS data can provide cattle contact
patterns that potentially have major implications for infection transmission within the
herd [53] or between domestic cattle and wildlife species [54].

GNSS data offer the possibility to monitor animal behaviour, such as foraging, walk-
ing and resting, with an accuracy ranging from 57 to 87.5% depending on the circum-
stances [55–62]. However, the potential of GNSS for behavioural monitoring might benefit
from combination with other sensors such as accelerometers [63–72]. GNSS data can also
be utilized to understand and monitor cattle herd spatiotemporal behaviour [57] and con-
sequently changes in herd dispersion–aggregation patterns [73,74]. The monitoring of this
spatiotemporal behaviour of cows makes it possible to determine the social structure [63,73]
and identify dominant animals in herd situations [73].

A virtual fence (VF) can be defined as a structure serving as an enclosure, a barrier,
or a boundary without a physical barrier [75]. Some virtual fencing technologies use
GNSS collars that deliver an audio cue when the animal approaches a GNSS-defined
virtual boundary (e.g., [76,77]). An aversive electric stimulus is delivered by the device
if, following the audio cue, the animal walks beyond the virtual boundary, but not if it
stops walking or turns back. The animal learns to associate the audio cue with the pending
electrical stimulus unless it changes its behaviour, and increasingly responds to the audio
cue alone [78]. The general public has shown some concern about animal welfare when
it comes to implementing virtual fencing technology [79]. Acosta et al. [80] have thus
suggested replacing the electrical stimuli with tactile stimuli. However, several authors
have confirmed that the VF does not impact welfare any greater than traditional physical
electric fencing [81–85]. When the use of a VF promotes the use of, for instance, strip
grazing instead of keeping animals indoors, it can improve animal welfare [86].

2.2. Ultra-Wideband (UWB)

The technique of ultra-wideband (UWB) has been around since the 19th century,
but has only recently been used for the tracking of animals [87,88]. UWB is a wireless
technology developed to transfer data at high rates over very short distances at very low
power densities [89] and is one of the most reliable and accurate technologies available in
the field of indoor positioning [90]. The UWB techniques used to track animals are spatially
and temporally more accurate than GNSS technology [91]. The tracking of animals is mainly
performed indoors but has also recently been successfully applied in field settings [92,93].

In many environments, the data from a UWB tracking system can contain unwanted
noise due to the signal being masked or interfered with by the animals or by equipment in
the barn [94]. Missing data from UWB devices might hinder reliable continuous monitoring
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and analysis of animal movement and social behaviour [95]. However, the quality of the
data can be enhanced using filters [23,96,97] or with automated image analysis on density
maps based on animals locations [94]. In this respect, the precise calibration and validation
of a UWB tracking system is of the utmost importance [98].

Tracking cow activity with UWB and monitoring circadian rhythms might help detect
health issues such as lameness and mastitis [99]. UWB data can provide information on, for
instance, walking distance and lying time, which can be used for lameness detection [100].
It is also possible to monitor the proximity interaction network of a herd, which in the
future might be used to detect individual differences in social associations; in turn, this
could be used to identify health issues [29,101]. Data from UWB positioning systems can
be used to measure animal behaviours [23,102,103] such as feeding behaviour [26,96,104]
and oestrus behaviour [99,105–108]. However, Shane et al. [109] showed that one should
be careful when inferring the behaviour based solely on the location data of the animal.
Additional sensor data might be complimentary to UWB data. For instance, Ren et al. [28]
were able to detect affiliative and agonistic social interactions with high accuracy when
combining UWB with computer vision technology.

2.3. Radio Frequency Identification (RFID)

Radio frequency identification (RFID) was originally developed for identification
purposes, but it can also be applied for the positioning and tracking of animals. RFID
systems consist of a tag or transponder and a reader or transceiver that reads and writes data
to a transponder [110,111]. RFID tags can be active, passive, or semi-passive. Passive and
semi-passive RFID send their data by reflection or modulation of the electromagnetic field
that was emitted by the reader, which limits the reading range to between 10 cm and 3 m.
The battery of a semi-passive RFID is only used to power the sensor and data processing
circuitry. An active RFID has a battery that enables higher signal strength and an extended
communication range of up to 100 m, but is larger due to the presence of that battery and
more electronic components [112,113]. The speed of travel of the animal [114,115] and body
tissue near the transponders [116,117] have a strong influence on the reading performance
of the system so the optimal position of the tag and reader should be considered [117].
Curran et al. [112] experimented with RFID-Radar where the reader calculates the location
of transponders while interfacing with the reader instead of just recording its presence. In
this capacity, it could be used as an indoor RFID-based location determination system, but
Curran et al. deemed it impractical due to too many inaccurate readings.

RFID systems have been used to detect feeding behaviour [118–120], drinking be-
haviour [121,122] and supplement intake [123] based on proximity to the feed bunk, water
point and mineral lick block, respectively. Toaf et al. [124] found that an RFID-based ear tag
recording of brush proximity was not yet a reliable representation of grooming behaviour
as some animals spent a relatively large portion of time standing idle close to the brush,
resulting in false positives.

2.4. Wireless Sensor Networks

Wireless sensor networks (WSNs) use small, low-cost, low-power sensor nodes that
communicate untethered over short distances [125,126]. WSNs have attracted more research
efforts in the past few years and several standards in communications protocols such as
Bluetooth and Zigbee have already been established [113]. These offer great opportunities
for cattle monitoring [127–129] and localization [130–132]. There are several wireless
communication technologies available for WSN, such as Bluetooth, Zigbee, BLE, LTE,
WiFi and LoRa, each with its advantages and disadvantages [133,134]. For a wireless
technology such as Zigbee, the network range is mostly between 10 and 30 m [135], which
would be impractical for tracking purposes in large, outdoor environments; however,
according to Feng et al. [136], it is preferable for indoor situations owing to its low power
consumption. For long-range communication (>5 km), LPWAN technologies such as
LoRa are preferable [136,137]. The system and the number of nodes needed for accurate
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communication depend on the environment [138]. Maroto-Malino et al. [139] developed
a promising fusion system for a field setting with a few animals in the herd being fitted
with a GPS collar for location determining and the rest of the animals being fitted with
low-cost BLE tags to determine their relative location to the animals with the GPS collars.
Nodes are becoming increasingly smaller and energy-efficient [140,141]. WSNs are often
bioinspired, meaning that the network mechanisms are based on animal behaviour [142]
and data collection may be real-time or more opportunistic [143].

Nadimi et al. [144] used a Zigbee WSN to determine the total number of animals
roaming in a certain area of the field when using strip grazing and their total pasture
time to use the presence of the animals as an indicator of the grass quality and quantity,
which may help determine the right time to provide access to a new strip. WSN can be
used to determine the position of animals and, in combination with a three-axis activity
sensor, movement and activity status can be observed. This implies that it can be used for
analysing animal behaviour at specific locations in the barn [135]. By detecting abnormally
long walking distances, oestrus might be detected using a WSN [145], or by detecting if an
animal is being mounted, standing oestrus might be detected [146].

2.5. Computer Vision Technology

Computer vision is a simulation of biological vision and is part of the field of artificial
intelligence. In the field of animal science, computer vision is about deriving useful
information from videos and translating the videos into new insights on e.g., animal
behaviour through data science. A computer vision system extracts certain features from
images while performing other subtasks, e.g., edge detection, corner detection, image
segmentation and pattern recognition [147]. Although not primarily a location-determining
technique, by mimicking the human eye, computer vision can identify individuals and
thus identify an animal’s location. Biometric identification of animals through computer
vision is possible [148–150] and also the tracking and counting of animals [151–155]. The
use of a thermal sensor might even improve the tracking capabilities since it will make
it easier to detect animals against the background and distinguish between overlapping
individuals [156]. Computer vision relies on visual information only and thus is entirely
non-invasive and non-intrusive [157]. Outdoors, cameras could be mounted on drones for
locating and counting animals in the field [111].

The individual feed intake of dairy cows is an important variable in dairy farming
which vision technology has the potential to measure [158–160]. Using low-cost RGB-D
cameras, vision has the potential to measure the individual feed intake of dairy cows
in a cowshed [161] but the deep learning models used do need to be tuned to different
types of feed [162]. Computer vision can also be applied to determine behaviours such
as lying [163,164] or feeding and standing behaviour [165]. Being able to monitor animal
behaviour makes it possible to detect abnormal activities in case of disease [166,167].

Vision systems have a much wider scope than just determining location. They can also
be utilized for lameness detection [168,169] or to detect facial expressions associated with
health issues such as ‘pain face’ [170]. Using infrared cameras makes it possible to measure
animal temperature to detect fever [171] indicating disease. Another possibility would be
to detect the warm exhaled air to measure raised respiration rates [172] indicating heat
stress or disease.

2.6. Challenges with Location Determining Technologies

There are several promising techniques available for determining location and animal
monitoring in cattle, but all of them will have to compromise between performance and
system efficiency in terms of battery life, size and cost (Table 1). Besides this compromise,
there are issues such as standardization, data security, robustness and scalability, and
educational challenges that need to be taken into account [173,174].
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Table 1. Comparison of current location determining techniques used for cattle and details of the
research conducted to date in relation to the Welfare Quality principles.

GNSS UWB RFID WSN Vision

Works inside barn - ++ + + ++

Works in the field ++ - - + -

Battery life - + ++ + n/a

Size transponders + + - + n/a

Measuring welfare 1,2,3,4 3,4 1 2,4 1,2,3,4
-: poor, +: adequate, ++: good, n/a: not applicable 1: Good Housing, 2: Good Nutrition, 3: Good Health,
4: Appropriate Behaviour.

3. Welfare and Animal Location

According to the Welfare Quality system, welfare can be monitored in four domains:
good housing, good nutrition, good health and appropriate behaviour. In the previous
paragraphs, we have shown how different location determining techniques can play a
role in monitoring welfare in these domains (Table 1). Good housing can be assessed
by using location determining techniques to monitor space use, freedom of movement,
standing behaviour (as a measure for insufficient or unsuitable lying space) and preference
for certain drinkers or feeders. Good nutrition can be monitored by using the location
determining technique to monitor the distribution of a herd in the field or to calculate time
spent at the feeding rack or drinkers as an indicator of feeding and drinking behaviour.
Health can be monitored by using the location determining technique to detect changes
in behaviour, walking speed and social associations. Finally, location systems can give
an indication of behavioural patterns, social interactions and time budgets for behaviour,
which can be a strong factor in determining animal welfare. Several location determining
techniques are promising for this purpose but, as discussed, might not function in every
situation. GNSS has the longest history in animal tracking and thus has had more attention
as to its use; however, it is mostly just suitable for outdoor applications. Systems that
function well indoors, such as UWB and WSN, have difficulties in an outdoor setting due
to a lack of networking connectivity. Currently, GNSS seems to have the most benefits
for welfare monitoring based on location in a field setting. For an indoor setting, vision
technology, which has been receiving increased attention in recent years, may hold the
most potential for welfare monitoring. This is partly because it is much more than just a
location determining technique, it is also a system that can measure and monitor behaviour.
A future overall solution for location-based welfare monitoring might very well come
from WSNs, which is still in its infancy for this purpose but could potentially work well
both indoors and outdoors. Combining sensors (e.g., accelerometers) with any location
determining technique in a sensor or data fusion system can give more detailed information
on individual cows, and give an even more reliable and accurate indication of animal
welfare. For example, an inertial measurement unit (IMU), which uses an accelerometer,
gyroscope and magnetometer to accurately determine movement and relative position [175],
can be used in a data fusion system with RFID [176] or GNSS [177] to give more precise
information on behaviour. Another example is that an accelerometer alone might give
information on standing idle but the added information on location helps determine
whether this is a possible welfare issue. Idling in the queue in front of the AMS might be
considered normal behaviour, whereas idling at the feeding rack or in the cubicle could
indicate welfare issues such as disease, insufficient feed or unsuitable cubicles [178]. Still,
it is a major challenge to manage and translate the huge amount of heterogeneous data
produced by the various sensing technologies into new scientific insights.

4. Conclusions

We conclude that location systems are a promising tool in determining animal welfare,
especially when applied in conjunction with additional sensors, but additional research
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focused on the use in animal welfare monitoring is needed. In a field setting, GNSS have
the best potential for welfare monitoring based on location. Vision technology may hold
the most potential for welfare monitoring in an indoor setting. In the future, sensor and
data fusion systems may lead to objective ways of measuring animal welfare, which could
greatly benefit both animals and farmers.
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