Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. PVD Process
2.3. Film Characterization
3. Results
3.1. Chemical Properties
3.2. Surface Morphology
3.3. Electrical Properties
3.4. Optical Properties
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RMS | Root Mean Square |
XPS | X-ray Photoelectron Spectroscopy |
AFM | Atomic Force Microscope |
References
- Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium Alloys for Aerospace Applications. Adv. Eng. Mater. 2003, 5, 419–427. [Google Scholar] [CrossRef]
- Roy, M. Nanocomposite Films for Wear Resistance Applications. In Surface Engineering for Enhanced Performance Against Wear; Roy, M., Ed.; Springer: Vienna, Austria, 2013; pp. 45–78. [Google Scholar]
- Vaquila, I.; Passeggi, M.C.G.; Ferrón, J. Oxidation Process in Titanium Thin Films. Phys. Rev. B 1997, 55, 13925–13931. [Google Scholar] [CrossRef]
- Froes, F.H. Titanium for Medical and Dental Applications—An Introduction. In Titanium in Medical and Dental Applications; Froes, F.H., Qian, M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 3–21. [Google Scholar]
- Sánchez-López, J.C.; Godinho, V.; López-Santos, C.; Navarro, P.; Rodríguez-Albelo, L.M.; Sánchez-Pérez, M.; Jiménez-Piqué, E.; Torres, Y. Magnetron Sputtered ß-Ti Coatings for Biomedical Application: A Hipims Approach to Improve Corrosion Resistance and Mechanical Behavior. Appl. Surf. Sci. 2025, 680, 161366. [Google Scholar] [CrossRef]
- Castillo-Blas, C.; García, M.J.; Chester, A.M.; Mazaj, M.; Guan, S.; Robertson, G.P.; Kono, A.; Steele, J.M.; León-Alcaide, L.; Poletto-Rodrigues, B. Structural and Interfacial Characterization of a Photocatalytic Titanium Mof-Phosphate Glass Composite. ACS Appl. Mater. Interfaces 2025, 17, 15793–15803. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhou, K.; Wang, Y. Design and Fabrication of Bioactive and Antibacterial Lipss Surfaces on Titanium Alloy by Femtosecond Laser. ACS Appl. Bio. Mater. 2025, 8, 3270–3278. [Google Scholar] [CrossRef]
- Lapidas, V.; Cherepakhin, A.B.; Kozlov, A.G.; Shevlyagin, A.V.; Kolonica, K.; Shevlyagina, S.; Kokhanovskiy, A.; Zhang, J.; Zhizhchenko, A.Y.; Kuchmizhak, A.A. Structural Coloration on Titanium Films by Direct Femtosecond Laser Patterning Empowered by Neural Networks. ACS Appl. Mater. Interfaces 2025, 17, 16122–16131. [Google Scholar] [CrossRef]
- Tarnawski, Z.; Kim-Ngan, N.T.H. Hydrogen Storage Characteristics of Ti– and V–Based Thin Films. J. Sci. Adv. Mater. Devices 2016, 1, 141–146. [Google Scholar] [CrossRef]
- La, D.D.; Rananaware, A.; Thi, H.P.N.; Jones, L.; Bhosale, S.V. Fabrication of a TiO2@ Porphyrin Nanofiber Hybrid Material: A Highly Efficient Photocatalyst under Simulated Sunlight Irradiation. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015009. [Google Scholar]
- Jain, I.; Vijay, Y.; Malhotra, L.; Uppadhyay, K. Hydrogen Storage in Thin Film Metal Hydride—A Review. Int. J. Hydrogen Energy 1988, 13, 15–23. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.M.; Han, H.; Lee, J.; Ko, D.; Park, K.R.; Jang, K.; Kim, D.; Forrester, J.S.; Lee, S.H. Ti/TiO2/SiO2 Multilayer Thin Films with Enhanced Spectral Selectivity for Optical Narrow Bandpass Filters. Sci. Rep. 2022, 12, 32. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Alaei-Sheini, N. Electronic Conduction in Ti/Poly-TiO2/Ti Structures. Sci. Rep. 2016, 6, 29624. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Babaei, F.; Rahbarpour, S. Titanium and Silver Contacts on Thermally Oxidized Titanium Chip: Electrical and Gas Sensing Properties. Solid-State Electron. 2011, 56, 185–190. [Google Scholar] [CrossRef]
- Dominik, M.; Leśniewski, A.; Janczuk, M.; Niedziółka-Jönsson, J.; Hołdyński, M.; Godlewski, M.; Bock, W.; Śmietana, M. Titanium Oxide Thin Films Obtained with Physical and Chemical Vapour Deposition Methods for Optical Biosensing Purposes. Biosens. Bioelectron. 2017, 93, 102–109. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Wang, H.; Li, M.; Guo, L.J.; Zhang, C. Structural Color Generation: From Layered Thin Films to Optical Metasurfaces. Nanophotonics 2023, 12, 1019–1081. [Google Scholar] [CrossRef]
- Wang, Y.; Han, R.; Qi, L.; Liu, L.; Sun, H. Synthesis of Ultrathin TiO2/Ti films with Tunable Structural Color. Appl. Opt. 2016, 55, 10002–10005. [Google Scholar] [CrossRef] [PubMed]
- Karuppasamy, A.; Subrahmanyam, A. Studies on the Room Temperature Growth of Nanoanatase Phase TiO2 Thin Films by Pulsed Dc Magnetron with Oxygen as Sputter Gas. J. Appl. Phys. 2007, 101, 064318. [Google Scholar] [CrossRef]
- Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M.L.; Pasca, E.; Ventura, G. Correlation of Critical Temperatures and Electrical Properties in Titanium Films. Int. J. Mod. Phys. B 2012, 17, 948–952. [Google Scholar] [CrossRef]
- Kangarlou, H.; Motallebi Aghgonbad, M. Influence of Thickness on Optical Properties of Titanium Layers. Opt. Spectrosc. 2013, 115, 753–757. [Google Scholar] [CrossRef]
- Singh, B.; Surplice, N.A. The Electrical Resistivity and Resistance-Temperature Characteristics of Thin Titanium Films. Thin Solid Film. 1972, 10, 243–253. [Google Scholar] [CrossRef]
- Cai, K.; Müller, M.; Bossert, J.; Rechtenbach, A.; Jandt, K.D. Surface Structure and Composition of Flat Titanium Thin Films as a Function of Film Thickness and Evaporation Rate. Appl. Surf. Sci. 2005, 250, 252–267. [Google Scholar] [CrossRef]
- Hofmann, K.; Spangenberg, B.; Luysberg, M.; Kurz, H. Properties of Evaporated Titanium Thin Films and Their Possible Application in Single Electron Devices. Thin Solid Film. 2003, 436, 168–174. [Google Scholar] [CrossRef]
- Huth, M.; Flynn, C.P. Titanium Thin Film Growth on Small and Large Misfit Substrates. Appl. Phys. Lett. 1997, 71, 2466–2468. [Google Scholar] [CrossRef]
- Bräuer, G.; Szyszka, B.; Vergöhl, M.; Bandorf, R. Magnetron Sputtering—Milestones of 30 years. Vacuum 2010, 84, 1354–1359. [Google Scholar] [CrossRef]
- Chinmulgund, M.; Inturi, R.B.; Barnard, J.A. Effect of Ar Gas Pressure on Growth, Structure, and Mechanical Properties of Sputtered Ti, Al, TiAl, and Ti3Al Films. Thin Solid Film. 1995, 270, 260–263. [Google Scholar] [CrossRef]
- Einollahzadeh-Samadi, M.; Dariani, R.S. Effect of Substrate Temperature and Deposition Rate on the Morphology and Optical Properties of Ti Films. Appl. Surf. Sci. 2013, 280, 263–267. [Google Scholar] [CrossRef]
- Jaiswal, J.; Mourya, S.; Malik, G.; Chauhan, S.; Daipuriya, R.; Singh, M.; Chandra, R. Enhanced Optical Absorption of Ti Thin Film: Coupled Effect of Deposition and Post-deposition Temperatures. JOM 2017, 69, 2383–2389. [Google Scholar] [CrossRef]
- Jeyachandran, Y.L.; Karunagaran, B.; Narayandass, S.K.; Mangalaraj, D.; Jenkins, T.E.; Martin, P.J. Properties of Titanium Thin Films Deposited by Dc Magnetron Sputtering. Mater. Sci. Eng. A 2006, 431, 277–284. [Google Scholar] [CrossRef]
- Korotkova, K.; Bainov, D.; Smirnov, S.; Yunusov, I.; Zhidik, Y. Electrical Conductivity and Optical Properties of Nanoscale Titanium Films on Sapphire for Localized Plasmon Resonance-Based Sensors. Coatings 2020, 10, 1165. [Google Scholar] [CrossRef]
- Matveev, V.A.; Pleshanov, N.K.; Bulkin, A.P.; Syromyatnikov, V.G. The Study of the Oxidation of Thin Ti Films by Neutron Reflectometry. J. Phys. Conf. Ser. 2012, 340, 012086. [Google Scholar] [CrossRef]
- Kawasaki, H.; Ohshima, T.; Arafune, K.; Yagyu, Y.; Suda, Y. Preparation of a Titanium Thin Film Using a Sputtering Deposition Process with a Powder Material Target. Trans. Mater. Res. Soc. Jpn. 2012, 37, 147–150. [Google Scholar] [CrossRef]
- Okimura, K.; Nakamura, T. Ionic Densities and Ionization Fractions of Sputtered Titanium in Radio Frequency Magnetron Sputtering. J. Vac. Sci. Technol. A 2003, 21, 988–993. [Google Scholar] [CrossRef]
- Jeyachandran, Y.L.; Karunagaran, B.; Narayandass, S.K.; Mangalaraj, D. The Effect of Thickness on the Properties of Titanium Films Deposited by Dc Magnetron Sputtering. Mater. Sci. Eng. A 2007, 458, 361–365. [Google Scholar] [CrossRef]
- Matveev, V.A.; Pleshanov, N.K.; Gerashchenko, O.V.; Bayramukov, V.Y. Complex Study of Titanium Nano-Films Prepared by Magnetron Sputtering. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2014, 8, 991–996. [Google Scholar] [CrossRef]
- Cicala, G.; Massaro, A.; Velardi, L.; Valentini, A.; Adamo, F.; Attivissimo, F. DLC Integrated GHz Antenna for Aerospace. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; pp. 256–260. [Google Scholar] [CrossRef]
- Park, B.-S.; Lee, J.-M.; Lee, S.-G.; Kang, M.-S.; Choi, J.-I. Design of Sputter-Deposited Multilayer Thin Films Planar Inverted-F Antenna for Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1143–1145. [Google Scholar] [CrossRef]
- Jung, Y.H.; Qiu, Y.; Lee, S.; Shih, T.-Y.; Xu, Y.; Xu, R.; Lee, J.; Schendel, A.A.; Lin, W.; Williams, J.C.; et al. A Compact Parylene-Coated Wlan Flexible Antenna for Implantable Electronics. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1382–1385. [Google Scholar] [CrossRef]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef]
- Tanaka, M.; Jae-Hyeuk, J. Wearable Microstrip Antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003. [Google Scholar]
- Mair, D.; Renzler, M.; Pfeifhofer, A.; Ußmüller, T. Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics 2020, 9, 1856. [Google Scholar] [CrossRef]
- Shahpari, M.; Thiel, D. The Impact of Reduced Conductivity on the Performance of Wire Antennas. IEEE Trans. Antennas Propag. 2015, 63, 4686–4692. [Google Scholar] [CrossRef]
- Leung, S.; Montenbruck, O. Real-Time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements. J. Guid. Control Dyn. 2005, 28, 226–235. [Google Scholar] [CrossRef]
- Mwema, F.; Wambua, J.; Jen, T.-C.; Akinlabi, E. Influence of Sputtering DC Sputtering Power on the Surface Evolution of Ti Thin Films: A Fractal Description. JOM 2025, 77, 564–577. [Google Scholar] [CrossRef]
- Kazakova, A.; Fomin, E.; Levin, A.A.; Nashchekin, A.; Shashkin, I.; Shuvalova, N.; Rastegaeva, M.; Slipchenko, S.; Pikhtin, N. Properties of Ti Films Produced on Atomically Smooth GaAs Substrates by Magnetron Sputtering. Thin Solid Film. 2024, 803, 140457. [Google Scholar] [CrossRef]
- Smits, F.M. Measurement of Sheet Resistivities with the Four-Point Probe. Bell Syst. Tech. J. 1958, 37, 711–718. [Google Scholar] [CrossRef]
- Cacciafesta, P.; Hallam, K.R.; Oyedepo, C.A.; Humphris, A.D.L.; Miles, M.J.; Jandt, K.D. Characterization of Ultraflat Titanium Oxide Surfaces. Chem. Mater. 2002, 14, 777–789. [Google Scholar] [CrossRef]
- Maghazeii, F.; Savaloni, H.; Gholipour-Shahraki, M. The Influence of Growth Parameters on the Optical Properties and Morphology of Uhv Deposited Ni Thin Films. Opt. Commun. 2008, 281, 4687–4695. [Google Scholar] [CrossRef]
- Hövel, M.; Gompf, B.; Dressel, M. Dielectric Properties of Ultrathin Metal Films Around the Percolation Threshold. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 035402. [Google Scholar] [CrossRef]
- Powell, R.W.; Tye, R.P. The Thermal and Electrical Conductivity of Titanium and Its Alloys. J. Less Common Met. 1961, 3, 226–233. [Google Scholar] [CrossRef]
- Bennett, H.E.; Porteus, J.O. Relation between Surface Roughness and Specular Reflectance at Normal Incidence. J. Opt. Soc. Am. 1961, 51, 123–129. [Google Scholar] [CrossRef]
- Tomilina, O.; Berzhansky, V.; Tomilin, S. The Influence of the Percolation Transition on the Electric Conductive and Optical Properties of Ultrathin Metallic Films. Phys. Solid State 2020, 62, 700–707. [Google Scholar] [CrossRef]
- Yagil, Y.; Deutscher, G. Scaling and Renormalization in Transmittance of Thin Metal Films near the Percolation Threshold. Appl. Phys. Lett. 1988, 52, 373–374. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on Uv–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Ananthakumar, R.; Subramanian, B.; Yugeswaran, S.; Jayachandran, M. Effect of Substrate Temperature on Structural, Morphological and Optical Properties of Crystalline Titanium Dioxide Films Prepared by DC Reactive Magnetron Sputtering. J. Mater. Sci. Mater. Electron. 2012, 23, 1898–1904. [Google Scholar] [CrossRef]
Title 1 | Deposition Time (min) | Thickness Deposited (nm) | Roughness Sq (nm) | Sheet Resistance Rs (Ω/sq) |
---|---|---|---|---|
Continuous deposition | 20 | 105 ± 5 | 1.13 ± 0.02 | 7.13 ± 0.03 |
17 | 89 ± 5 | 0.94 ± 0.06 | 8.39 ± 0.03 | |
15 | 79 ± 5 | 0.98 ± 0.06 | 9.67 ± 0.03 | |
10 | 53 ± 2 | 0.81 ± 0.06 | 16.00 ± 0.06 | |
5 | 38 ± 2 | 0.46 ± 0.04 | 35.9 ± 0.3 | |
2 | 20 ± 3 | 0.26 ± 0.01 | 137.8 ± 0.9 | |
1 | 7 ± 2 | 0.29 ± 0.02 | 478 ± 5 | |
0.5 | 4 ± 1 | 0.24 ± 0.01 | 1355 ± 2 | |
Pulsed deposition | 90 | 70 ± 5 | 0.73 ± 0.05 | 20.1 ± 0.5 |
40 | 30 ± 3 | 0.27 ± 0.03 | 45.3 ± 0.4 | |
10 | 10 ± 1 | 0.25 ± 0.02 | 279 ± 2 | |
5 | 5 ± 1 | 0.26 ± 0.02 | 830 ± 10 | |
2 | 4 ± 1 | 0.26 ± 0.05 | 9700 ± 500 | |
1 | 3 ± 1 | 0.76 ± 0.05 | 17,000,000 ± 2,000,000 | |
0.5 | 0.5 ± 1.0 | 0.7 ± 0.3 | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reider, A.M.; Kronthaler, A.; Zappa, F.; Menzel, A.; Laimer, F.; Scheier, P. Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature. Surfaces 2025, 8, 36. https://doi.org/10.3390/surfaces8020036
Reider AM, Kronthaler A, Zappa F, Menzel A, Laimer F, Scheier P. Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature. Surfaces. 2025; 8(2):36. https://doi.org/10.3390/surfaces8020036
Chicago/Turabian StyleReider, Anna Maria, Ariane Kronthaler, Fabio Zappa, Alexander Menzel, Felix Laimer, and Paul Scheier. 2025. "Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature" Surfaces 8, no. 2: 36. https://doi.org/10.3390/surfaces8020036
APA StyleReider, A. M., Kronthaler, A., Zappa, F., Menzel, A., Laimer, F., & Scheier, P. (2025). Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature. Surfaces, 8(2), 36. https://doi.org/10.3390/surfaces8020036