Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment
Abstract
:1. Introduction
2. Direct Photons in High Energy pp and p–A Collisions
3. Thermal Photon Production in High-Energy A–A Collisions
3.1. Direct Photon Elliptic Flow
3.2. Direct Photons in Small Systems
4. Direct Photons at Low Colliding Energies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuryak, E.V. Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions. Phys. Lett. B 1978, 78, 150. [Google Scholar] [CrossRef]
- Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Jamel, A.; Alex, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; Aronson, S.H.; et al. Measurement of Direct Photons in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2012, 109, 152302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, F. Shining a Light on the QGP—Electroweak Probes Experimental Summary. PoS 2019, HardProbes2018, 011. [Google Scholar] [CrossRef]
- Wilson, K.G. Nonlagrangian models of current algebra. Phys. Rev. 1969, 179, 1499–1512. [Google Scholar] [CrossRef]
- Berman, S.M.; Bjorken, J.D.; Kogut, J.B. Inclusive Processes at High Transverse Momentum. Phys. Rev. D 1971, 4, 3388–3418. [Google Scholar] [CrossRef] [Green Version]
- Arleo, F.m.c.; Brodsky, S.J.; Hwang, D.S.; Sickles, A.M. Higher-Twist Dynamics in Large Transverse Momentum Hadron Production. Phys. Rev. Lett. 2010, 105, 062002. [Google Scholar] [CrossRef] [Green Version]
- Contogouris, A.P.; Kamal, B.; Merebashvili, Z.; Tkachov, F.V. Complete next-to-leading order corrections for direct photon production by polarized beam and target. Phys. Lett. B 1993, 304, 329–333. [Google Scholar] [CrossRef]
- Gordon, L.; Vogelsang, W. Polarized and unpolarized prompt photon production beyond the leading order. Phys. Rev. 1993, D48, 3136–3159. [Google Scholar] [CrossRef] [PubMed]
- Catani, S.; Fontannaz, M.; Guillet, J.P.; Pilon, E. Cross-section of isolated prompt photons in hadron hadron collisions. JHEP 2002, 2002, 028. [Google Scholar] [CrossRef] [Green Version]
- Aurenche, P.; Fontannaz, M.; Guillet, J.P.; Pilon, E.; Werlen, M. A New critical study of photon production in hadronic collisions. Phys. Rev. D 2006, 73, 094007. [Google Scholar] [CrossRef]
- Aurenche, P.; Basu, R.; Fontannaz, M. NLO Calculation of Prompt Photon Production in DIS at HERA. Eur. Phys. J. C 2011, 71, 1616. [Google Scholar] [CrossRef]
- Bothmann, E.; Singh, C.G.; Höche, S.; Krause, J.; Krauss, F.; Kuttimalai, S.; Liebschner, S.; Napoletano, D.; Schönherr, M.; Schulz, H.; et al. Event Generation with Sherpa 2.2. SciPost Phys. 2019, 7, 034. [Google Scholar] [CrossRef]
- Chen, X.; Gehrmann, T.; Glover, N.; Höfer, M.; Huss, A. Isolated photon and photon+jet production at NNLO QCD accuracy. JHEP 2020, 4, 166. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.; Abramowicz, H.; Abreu, H.; et al. Centrality, rapidity and transverse momentum dependence of isolated prompt photon production in lead-lead collisions at = 2.76 TeV measured with the ATLAS detector. Phys. Rev. C 2016, 93, 034914. [Google Scholar] [CrossRef] [Green Version]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Measurement of isolated photon production in pp and PbPb collisions at = 2.76 TeV. Phys. Lett. B 2012, 710, 256–277. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, D.C.; Abdinov, O.; Abeling, K.; Abidi, S.H.; Abraham, N.L.; Abreu, H.; Adamek, L.; Adam, L.; Adelman, J.; et al. Measurement of the inclusive isolated-photon cross section in pp collisions at = 13 TeV using 36 fb−1 of ATLAS data. JHEP 2019, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Measurement of the inclusive isolated photon production cross section in pp collisions at = 7 TeV. Eur. Phys. J. C 2019, 79, 896. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Bataineh, H.; Alex, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.; et al. Enhanced production of direct photons in Au+Au collisions at = 200 GeV and implications for the initial temperature. Phys. Rev. Lett. 2010, 104, 132301. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aiola, S.; Akindinov, A.; et al. Direct photon production in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2016, 754, 235–248. [Google Scholar] [CrossRef]
- Paquet, J.F.; Shen, C.; Denicol, G.S.; Luzum, M.; Schenke, B.; Jeon, S.; Gale, C. Production of photons in relativistic heavy-ion collisions. Phys. Rev. C 2016, 93, 044906. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, H.; He, M.; Rapp, R. Pseudo-critical enhancement of thermal photons in relativistic heavy-ion collisions? Nucl. Phys. A 2015, 933, 256–271. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.; Holopainen, H.; Renk, T.; Eskola, K.J. Collision centrality and τ0 dependence of the emission of thermal photons from fluctuating initial state in ideal hydrodynamic calculation. Phys. Rev. C 2012, 85, 064910. [Google Scholar] [CrossRef] [Green Version]
- Bratkovskaya, E.L.; Cassing, W.; Moreau, P.; Soloveva, O.E.; Oliva, L.; Song, T. PHSD—A microscopic transport approach for strongly interacting systems. In Advances in Nuclear Physics; Structure and Reactions; Springer: Singapore, 2021; pp. 119–136. [Google Scholar]
- Acharya, U.A.; Adare, A.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Alfred, M.; Apadula, N.; Asano, H.; Azmoun, B.; Babintsev, V.; et al. Nonprompt direct-photon production in Au+Au collisions at = 200 GeV. arXiv 2022, arXiv:2203.17187. [Google Scholar]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitan, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Direct virtual photon production in Au+Au collisions at = 200 GeV. Phys. Lett. B 2017, 770, 451–458. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Bataineh, H.; Alex, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.; et al. Detailed measurement of the e+e− pair continuum in p+p and Au+Au collisions at = 200 GeV and implications for direct photon production. Phys. Rev. C 2010, 81, 034911. [Google Scholar] [CrossRef] [Green Version]
- Kroll, N.M.; Wada, W. Internal pair production associated with the emission of high-energy gamma rays. Phys. Rev. 1955, 98, 1355–1359. [Google Scholar] [CrossRef]
- Gale, C.; Paquet, J.F.M.C.; Schenke, B.; Shen, C. Multimessenger heavy-ion collision physics. Phys. Rev. C 2022, 105, 014909. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alex, J.; Alfred, M.; Al-Jamel, A.; et al. Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions. Phys. Rev. Lett. 2019, 123, 022301. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Heinz, U.W.; Paquet, J.F.; Gale, C. Thermal photons as a quark-gluon plasma thermometer reexamined. Phys. Rev. C 2014, 89, 044910. [Google Scholar] [CrossRef] [Green Version]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Bataineh, H.; Alex, J.; Aoki, K.; Aramaki, Y.; Atomssa, E.T.; et al. Observation of direct-photon collective flow in = 200 GeV Au+Au collisions. Phys. Rev. Lett. 2012, 109, 122302. [Google Scholar] [CrossRef] [PubMed]
- David, G. Direct real photons in relativistic heavy ion collisions. Rept. Prog. Phys. 2020, 83, 046301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, S. Centrality dependence of soft photon production and its collective flow in Au+Au collisions at = 200 GeV. Nucl. Phys. A 2014, 931, 686–690. [Google Scholar] [CrossRef]
- Van Hees, H.; Gale, C.; Rapp, R. Thermal Photons and Collective Flow at the Relativistic Heavy-Ion Collider. Phys. Rev. C 2011, 84, 054906. [Google Scholar] [CrossRef] [Green Version]
- Linnyk, O.; Cassing, W.; Bratkovskaya, E.L. Centrality dependence of the direct photon yield and elliptic flow in heavy-ion collisions at = 200 GeV. Phys. Rev. C 2014, 89, 034908. [Google Scholar] [CrossRef] [Green Version]
- Muller, B.; Wu, S.Y.; Yang, D.L. Elliptic flow from thermal photons with magnetic field in holography. Phys. Rev. D 2014, 89, 026013. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aiola, S.; et al. Direct photon elliptic flow in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2019, 789, 308–322. [Google Scholar] [CrossRef]
- Chatterjee, R.; Srivastava, D.K. Elliptic flow of thermal photons and formation time of quark gluon plasma at RHIC. Phys. Rev. C 2009, 79, 021901. [Google Scholar] [CrossRef] [Green Version]
- Linnyk, O.; Bratkovskaya, E.L.; Cassing, W. Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes. Prog. Part. Nucl. Phys. 2016, 87, 50–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shovkovy, I.A.; Yu, L.; Huang, M. Ellipticity of photon emission from strongly magnetized hot QCD plasma. Phys. Rev. D 2020, 102, 076010. [Google Scholar] [CrossRef]
- Novitzky, N. Low-pT direct photon production in p+p and p+ Au collisions at = 200 GeV. PoS 2019, HardProbes2018, 185. [Google Scholar] [CrossRef]
- Shen, C.; Paquet, J.F.; Denicol, G.S.; Jeon, S.; Gale, C. Electromagnetic radiation and collectivity in small quark–gluon droplets. Nucl. Part. Phys. Proc. 2017, 289–290, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Paquet, J.F.; Denicol, G.S.; Jeon, S.; Gale, C. Collectivity and electromagnetic radiation in small systems. Phys. Rev. C 2017, 95, 014906. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.J.; Gao, J.; Hobbs, T.J.; Xie, K.; Dulat, S.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C.; et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 2021, 103, 014013. [Google Scholar] [CrossRef]
- Ball, R.D.; Bertone, V.; Carrazza, S.; Debbio, L.D.; Forte, S.; Groth-Merrild, P.; Guffanti, A.; Hartl, N.P.; Kassabov, Z.; Latorre, J.I.; et al. Parton distributions from high-precision collider data. Eur. Phys. J. C 2017, 77, 663. [Google Scholar] [CrossRef]
- Alekhin, S.; Blümlein, J.; Moch, S.; Placakyte, R. Parton distribution functions, αs, and heavy-quark masses for LHC Run II. Phys. Rev. D 2017, 96, 014011. [Google Scholar] [CrossRef] [Green Version]
- Harland-Lang, L.A.; Martin, A.D.; Motylinski, P.; Thorne, R.S. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 2015, 75, 204. [Google Scholar] [CrossRef] [Green Version]
- Kusina, A.; Kovarik, K.; Jezo, T.; Clark, D.B.; Keppel, C.; Lyonnet, F.; Morfin, J.G.; Olness, F.I.; Owens, J.F.; Schienbein, I.; et al. nCTEQ15—Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D 2016, 93, 085037. [Google Scholar] [CrossRef] [Green Version]
- Eskola, K.J.; Paakkinen, P.; Paukkunen, H.; Salgado, C.A. EPPS16: Nuclear parton distributions with LHC data. Eur. Phys. J. C 2017, 77, 163. [Google Scholar] [CrossRef] [Green Version]
- Abdul Khalek, R.; Ethier, J.J.; Rojo, J. Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider. Eur. Phys. J. C 2019, 79, 471. [Google Scholar] [CrossRef] [Green Version]
- Alekhin, S.; Blümlein, J.; Moch, S. NLO PDFs from the ABMP16 fit. Eur. Phys. J. C 2018, 78, 477. [Google Scholar] [CrossRef]
- Aggarwal, M.M.; Agnihotri, A.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; et al. Observation of direct photons in central 158-A-GeV Pb-208 + Pb-208 collisions. Phys. Rev. Lett. 2000, 85, 3595–3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bass, S.A.; Belkacem, M.; Bleicher, M.; Bravina, L.; Ernst, C.; Gerl, L.; Hofmann, M.; Hofmann, S.; Konopka, J.; Mao, G.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 1998, 41, 255–369. [Google Scholar] [CrossRef] [Green Version]
- Petersen, H.; Steinheimer, J.; Burau, G.; Bleicher, M.; Stöcker, H. A Fully Integrated Transport Approach to Heavy Ion Reactions with an Intermediate Hydrodynamic Stage. Phys. Rev. C 2008, 78, 044901. [Google Scholar] [CrossRef]
- Bäuchle, B.; Bleicher, M. Hybrid model calculations of direct photons in high-energy nuclear collisions. Phys. Rev. C 2010, 81, 044904. [Google Scholar] [CrossRef] [Green Version]
- Turbide, S.; Rapp, R.; Gale, C. Hadronic production of thermal photons. Phys. Rev. C 2004, 69, 014903. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Photon emission from quark gluon plasma: Complete leading order results. JHEP 2001, 12, 009. [Google Scholar] [CrossRef] [Green Version]
- Endres, S.; van Hees, H.; Bleicher, M. Photon and dilepton production at the Facility for Antiproton and Ion Research and beam-energy scan at the Relativistic Heavy-Ion Collider using coarse-grained microscopic transport simulations. Phys. Rev. C 2016, 93, 054901. [Google Scholar] [CrossRef] [Green Version]
- Parfenov, P.; Taranenko, A.; Selyuzhenkov, I.; Senger, P. Performance studies of anisotropic flow with MPD at NICA. EPJ Web Conf. 2019, 204, 07010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blau, D.; Peresunko, D. Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment. Particles 2023, 6, 173-187. https://doi.org/10.3390/particles6010009
Blau D, Peresunko D. Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment. Particles. 2023; 6(1):173-187. https://doi.org/10.3390/particles6010009
Chicago/Turabian StyleBlau, Dmitry, and Dmitri Peresunko. 2023. "Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment" Particles 6, no. 1: 173-187. https://doi.org/10.3390/particles6010009
APA StyleBlau, D., & Peresunko, D. (2023). Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment. Particles, 6(1), 173-187. https://doi.org/10.3390/particles6010009