Next Article in Journal
A Hexapod Robot with Non-Collocated Actuators
Next Article in Special Issue
Causal Graphs and Concept-Mapping Assumptions
Previous Article in Journal
Influence of Rake Angles of Multi-Position Tool on Cutting Characteristics
Previous Article in Special Issue
New Fuzzy Numerical Methods for Solving Cauchy Problems
Article Menu
Issue 2 (June) cover image

Export Article

Open AccessArticle
Appl. Syst. Innov. 2018, 1(2), 19; https://doi.org/10.3390/asi1020019

Adaptive Neuro-Fuzzy Inference System Based Grading of Basmati Rice Grains Using Image Processing Technique

Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India
Received: 10 April 2018 / Revised: 5 June 2018 / Accepted: 15 June 2018 / Published: 20 June 2018
(This article belongs to the Special Issue Fuzzy Decision Making and Soft Computing Applications)
Full-Text   |   PDF [1497 KB, uploaded 20 June 2018]   |  

Abstract

Grading of rice intents to discriminate broken and whole grain from a sample. Standard techniques for image-based rice grading using advanced statistical methods seldom take into account the domain knowledge associated with the data. In the context of a high product value basmati rice with an image based grading process, one ought to consider the physical properties of grain and the associated knowledge. In this present work, a model of quality grade testing and identification is proposed using a novel digital image processing and knowledge-based adaptive neuro-fuzzy inference system (ANFIS). The rationale behind adopting a grading system based on fuzzy rules relies on capabilities of ANFIS to simulate the behaviour of an expert in the characterization of rice grain using the physical properties of rice grains. The rice kernels are characterized with the help of morphological descriptors and geometric features which are derived from sample images of milled basmati rice. The predictive capability of the proposed technique has been tested on a sufficient number of training and test images of basmati rice grain. The proposed method outperforms with a promising result in an evaluation of rice quality with >98.5% classification accuracy for broken and whole grain as compared to standard machine learning technique viz. support vector machine (SVM) and K-nearest neighbour (KNN). The milling efficiency is also assessed using the ratio between head rice and broken rice percentage and it is 77.27% for the test sample. The overall results of the adopted methodology are promising in terms of classification accuracy and efficiency. View Full-Text
Keywords: ANFIS; basmati rice; image processing; grading; quality assessment; fuzzy inference system ANFIS; basmati rice; image processing; grading; quality assessment; fuzzy inference system
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Mandal, D. Adaptive Neuro-Fuzzy Inference System Based Grading of Basmati Rice Grains Using Image Processing Technique. Appl. Syst. Innov. 2018, 1, 19.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Appl. Syst. Innov. EISSN 2571-5577 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top