Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis of Black Soldier Fly (Hermetia illucens) Larvae
2.3. Fabrication of the Composites
2.4. Characterisation of the Biocomposites
2.4.1. Gloss
2.4.2. Colour
2.4.3. Transmittance and Opacity
2.4.4. Thickness
2.4.5. Water Vapour Permeability (WVP)
2.4.6. Moisture Content and Water Solubility
2.4.7. Water Absorption Capacity
2.4.8. Water and Oil Contact Angle
2.4.9. Cumulative Weight Loss
2.4.10. Mechanical Properties
2.4.11. Microstructure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Black Soldier Fly Larvae
3.2. Optical and Colour Properties
3.3. Transmittance and Opacity
3.4. Physical and Water Absorption Properties
3.5. Contact Angle
3.6. Cumulative Weight Loss of Films
3.7. Mechanical Properties
3.8. Microstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taktak, F.; Kaya, H.N. Biodegradable PVA/chitosan-based films enriched with rose hip extract and seed oil: Investigation of the influence of tragacanth gum ratio on functional properties and its application in cherry preservation. Int. J. Biol. Macromol. 2025, 307, 141023. [Google Scholar] [CrossRef] [PubMed]
- López-Padilla, A.; Cortés-Rodríguez, M.; Ortega-Toro, R. Development and Comparative Analysis of Hard and Soft Wheat Flour Films Enriched with Yellow and White Chlorella vulgaris Algae. Polymers 2025, 17, 785. [Google Scholar] [CrossRef] [PubMed]
- Sri Agustini, N.W.; Kusmiati, K.; Admirasari, R.; Nurcahyanto, D.A.; Hidhayati, N.; Apriastini, M.; Afiati, F.; Priadi, D.; Fitriani, B.M.; Adalina, Y.; et al. Characterization of corn-starch edible film with the addition of microalgae extract Chlorella vulgaris as an antioxidant applied to dodol (glutinous-rice cake) products. Case Stud. Chem. Environ. Eng. 2023, 8, 100511. [Google Scholar] [CrossRef]
- Kazmi, M.; Feroze, N.; Siddique, H.; Rustam, M.; Ikhlaq, A. An Investigation on Modification and Characterization of Environment Friendly Wheat Gluten based Packaging Films. J. Pak. Inst. Chem. Eng. 2014, 42, 109–116. [Google Scholar]
- Salahuddin, M.; Abdel-Wareth, A.A.A.; Hiramatsu, K.; Tomberlin, J.K.; Luza, D.; Lohakare, J. Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals 2024, 14, 510. [Google Scholar] [CrossRef]
- Global Market Insights. Informe de Participación y Tamaño del Mercado de Proteína de Insectos Para Alimentación Animal, 2032. Available online: https://www.gminsights.com/industry-analysis/animal-feed-insect-proteins-market (accessed on 4 April 2025).
- Gautam, B.; Tiwari, S.; Pokhrel, M.R.; Tomberlin, J.K.; Khanal, P. Expanding black soldier fly (BSF.; Hermetia illucens; Diptera: Stratiomyidae) in the developing world: Use of BSF larvae as a biological tool to recycle various organic biowastes for alternative protein production in Nepal. Biotechnol. Rep. 2025, 45, e00879. [Google Scholar] [CrossRef]
- Zozo, B.; Wicht, M.M.; Mshayisa, V.V.; van Wyk, J. The Nutritional Quality and Structural Analysis of Black Soldier Fly Larvae Flour before and after Defatting. Insects 2022, 13, 168. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; dos Santos Vieira, M.S.; Ferreira, R.S.B.; Amigo, J.M.; Batista, E.A.C.; Barbin, D.F. Prediction of total lipids and fatty acids in black soldier fly (Hermetia illucens L.) dried larvae by NIR-hyperspectral imaging and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125646. [Google Scholar] [CrossRef]
- Rampazzo, R.; Alkan, D.; Gazzotti, S.; Ortenzi, M.A.; Piva, G.; Piergiovanni, L. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packag. Technol. Sci. 2017, 30, 645–661. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Zhong, Y.; Zhao, Y.; Gao, P.; Tian, F.; Zhang, X.; Zhou, R.; Cullen, P.J. Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review. Polymers 2022, 14, 4025. [Google Scholar] [CrossRef]
- Baur, F.J.; Ensminger, L.G. The Association of Official Analytical Chemists (AOAC). J. Am. Oil Chem. Soc. 2005, 54, 171–172. [Google Scholar] [CrossRef]
- ASTM.D 523-89; Standard Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 1999.
- Acevedo-Puello, V.; Figueroa-López, K.J.; Ortega-Toro, R.; Co, K.J. Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications. J. Compos. Sci. 2023, 7, 337. [Google Scholar] [CrossRef]
- Dong, M.; Tian, L.; Li, J.; Jia, J.; Dong, Y.; Tu, Y.; Liu, X.; Tan, C.; Duan, X. Improving physicochemical properties of edible wheat gluten protein films with proteins, polysaccharides and organic acid. LWT 2022, 154, 112868. [Google Scholar] [CrossRef]
- Aguirre, A.; Borneo, R.; Leon, A.E. Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Biosci. 2013, 1, 2–9. [Google Scholar] [CrossRef]
- Pirsa, S. Nanocomposite base on carboxymethylcellulose hydrogel: Simultaneous absorbent of ethylene and humidity to increase the shelf life of banana fruit. Int. J. Biol. Macromol. 2021, 193, 300–310. [Google Scholar] [CrossRef]
- Martinelli, E.; Hill, S.D.; Finlay, J.A.; Callow, M.E.; Callow, J.A.; Glisenti, A.; Galli, G. Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza. Prog. Org. Coat. 2016, 90, 235–242. [Google Scholar] [CrossRef]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Navarro Arrieta, C.; Acevedo-Puello, V.; Fuentes Ordoñez, E.G.; Fonseca-Florido, H.; Ortega-Toro, R. Biodegradable monolayer film based on the collagen extracted from Oreochromis sp. processing byproducts blended with chitosan and assembled with PCL and PLA monolayers to form bilayers films. J. Food Process Eng. 2024, 47, e14696. [Google Scholar] [CrossRef]
- Aizah, N.; Yusoff, M.; Thian, H.C.; Komilus, C.F. Proximate Composition of Larvae, Prepupae and Adult in Black Soldier Fly (Hermetia illucens). J. Agrobiotechnol. 2022, 13, 109–117. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Caixeiro, S.; Peruzzo, M.; Onelli, O.D.; Vignolini, S.; Sapienza, R. Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering. ACS Appl. Mater. Interfaces 2017, 9, 7885–7890. [Google Scholar] [CrossRef] [PubMed]
- Ngasotter, S.; Xavier, K.A.M.; Sagarnaik, C.; Sasikala, R.; Mohan, C.O.; Jaganath, B.; Ninan, G. Evaluating the reinforcing potential of steam-exploded chitin nanocrystals in chitosan-based biodegradable nanocomposite films for food packaging applications. Carbohydr. Polym. 2025, 348, 122841. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M.; Velázquez, G. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydr. Polym. 2020, 236, 116031. [Google Scholar] [CrossRef]
- Zhang, Q.; Myers, D.; Lan, J.; Jenekhe, S.A.; Cao, G. Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 14982–14998. [Google Scholar] [CrossRef]
- Ng, R.; Park, J. Inquiring into a spectral concept in the physics classroom. Phys. Educ. 2024, 59, 063003. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; dos Santos Vieira, M.S.; Amigo, J.M.; Siche, R.; Barbin, D.F. Prediction of protein and lipid content in black soldier fly (Hermetia illucens L.) larvae flour using portable NIR spectrometers and chemometrics. Food Control 2023, 153, 109969. [Google Scholar] [CrossRef]
- Nazrin, A. Sugar palm (Arenga p innata) thermoplastic starch nanocomposite films reinforced with nanocellulose. Phys. Sci. Rev. 2024, 9, 2253–2272. [Google Scholar] [CrossRef]
- Costa, S.M.; Ferreira, D.P.; Teixeira, P.; Ballesteros, L.F.; Teixeira, J.A.; Fangueiro, R. Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. Int. J. Biol. Macromol. 2021, 177, 241–251. [Google Scholar] [CrossRef]
- Fu, M. Research on the Properties of Zein, Soy Protein Isolate, and Wheat Gluten Protein-Based Films Containing Cellulose Nanocrystals. Foods 2022, 11, 3010. [Google Scholar] [CrossRef]
- Escamilla-García, M. Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan. Int. J. Mol. Sci. 2022, 23, 10560. [Google Scholar] [CrossRef]
- He, R.; Gai, L.; Zhu, Z.; Gu, H.; Sun, P. Industrial by-products of tiger nut starch as a source of cellulose nanocrystals for biodegradable packaging materials. Int. J. Biol. Macromol. 2025, 306, 141422. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Wheat Flour-Based Edible Films: Effect of Gluten on the Rheological Properties, Structure, and Film Characteristics. Int. J. Mol. Sci. 2022, 23, 11668. [Google Scholar] [CrossRef] [PubMed]
- Collar, C. Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours. Food Sci. Technol. Int. 2017, 23, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Saman, W.R.; Yuliasih, I.; Sugiarto. Production of biodegradable film based on sweet potato starch with hydroxypropylation-crosslinking. IOP Conf. Ser. Earth Environ. Sci. 2020, 472, 012009. [Google Scholar] [CrossRef]
- Ahmad, K. Preparation and Characterization of Bio-based Nanocomposites Packaging Films Reinforced with Cellulose Nanofibers from Unripe Banana Peels. Starch-Stärke 2022, 74, 2100283. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Honkaniemi, S.; Visanko, M.; Liimatainen, H. Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 19691–19699. [Google Scholar] [CrossRef]
- David, O.; Arthur, E.; Kwadwo, S.O.; Badu, E.; Sakyi, P.; Nkrumah, K. Proximate Composition and Some Functional Properties of Soft Wheat Flour. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 753–758. [Google Scholar]
- Nandi, S.; Nayak, P.P.; Guha, P. Valorization of betel leaf industry waste: Extraction of cellulose nanocrystals and their compatibility with starch-based composite films. Biomass Bioenergy 2025, 194, 107678. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zhang, Y.; Li, F.; Jiao, X.; Li, Q. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films. Int. J. Biol. Macromol. 2021, 192, 444–451. [Google Scholar] [CrossRef]
- Torres-Vargas, O.; Campos Paéz, M.; Lema González, M. Corn starch based biocomposite films reinforced with cellulosic nanocrystals extracted from corn husks (Zea mays L.): Characterization and application in cherry tomato packaging. Ind. Crops Prod. 2025, 225, 120486. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Wang, J.; Gardner, D.J. Tunable biocomposite films fabricated using cellulose nanocrystals and additives for food packaging. Carbohydr. Polym. 2023, 321, 121315. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Blácido, D.; Mauri, A.N.; Menegalli, F.C.; Sobral, P.J.A.; Añón, M.C. Contribution of the Starch, Protein, and Lipid Fractions to the Physical, Thermal, and Structural Properties of Amaranth (Amaranthus caudatus) Flour Films. J. Food Sci. 2007, 72, E293–E300. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wu, Z.; Tan, X.; Deng, F.; Chen, Y.; Chen, Y.; Zhang, H. Preparation, Characterization and Antibacterial Property Analysis of Cellulose Nanocrystals (CNC) and Chitosan Nanoparticles Fine-Tuned Starch Film. Molecules 2022, 27, 8542. [Google Scholar] [CrossRef] [PubMed]
- Choque-Quispe, D.; Choque-Quispe, Y.; Ligarda-Samanez, C.A.; Peralta-Guevara, D.E.; Solano-Reynoso, A.M.; Ramos-Pacheco, B.S.; Taipe-Pardo, F.; Martínez-Huamán, E.L.; Aguirre Landa, J.P.; Agreda Cerna, H.W.; et al. Effect of the Addition of Corn Husk Cellulose Nanocrystals in the Development of a Novel Edible Film. Nanomaterials 2022, 12, 3421. [Google Scholar] [CrossRef]
Formulations | Soft Wheat Flour | Larvae Flour | CNCs |
---|---|---|---|
FL | 0 | 1 | 0 |
FW-L0.5 | 0.5 | 0.5 | 0 |
FW-L0.75 | 0.25 | 0.75 | 0 |
FW-L0.5-CNC1 | 0.495 | 0.495 | 0.01 |
FW-L0.75-CNC1 | 0.2475 | 0.7425 | 0.01 |
FW-L0.5-CNC5 | 0.4975 | 0.4975 | 0.005 |
FW-L0.75-CNC5 | 0.2487 | 0.7462 | 0.005 |
Parameter | Weighted (%) |
---|---|
Moisture | 6.140 ± 0.20 |
Protein | 38.59 ± 2.35 |
Fat | 35.84 ± 0.48 |
Formulations | Gloss 60° | Colour Parameters | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C | h | ΔE | ||
FL | 12.5 ± 0.8 b | 62.3 ± 0.7 c | 3.7 ± 0.1 b | 25.6 ± 0.2 b | 25.9 ± 0.2 b | 81.7 ± 0.1 cd | - |
FW-L0.5 | 13.3 ± 0.5 a | 66.0 ± 0.7 a | 2.8 ± 0.1 c | 22.4 ± 0.2 d | 24.1 ± 0.01 c | 78.7 ± 1.3 bc | - |
FW-L0.75 | 12.9 ± 0.4 ab | 67.4 ± 0.5 a | 2.4 ± 0.5 c | 21.8 ± 0.5 d | 22.3 ± 0.4 c | 83.1 ± 0.7 b | - |
FW-L0.5-CNC1 | 7.30 ± 0.5 c | 60.1 ± 0.2 d | 4.5 ± 0.2 b | 27.4 ± 0.9 a | 27.4 ± 0.9 a | 80.6 ± 0.4 d | 6.9 ± 0.5 a |
FW-L0.75-CNC1 | 13.4 ± 0.5 a | 67.5 ± 0.3 a | 2.9 ± 0.1 c | 23.7 ± 0.3 c | 23.5 ± 0.8 c | 83.7 ± 0.7 b | 2.3 ± 0.6 c |
FW-L0.5-CNC5 | 7.28 ± 0.9 c | 62.9 ± 0.6 c | 4.0 ± 0.2 ab | 26.0 ± 0.7 ab | 26.3 ± 0.1 ab | 94.7 ± 0.1 a | 5.3 ± 0.2 b |
FW-L0.75-CNC5 | 13.1 ± 0.4 ab | 63.4 ± 0.7 c | 3.7 ± 0.5 b | 25.2 ± 0.4 b | 25.4 ± 0.3 b | 81.6 ± 1.0 d | 7.5 ± 0.1 a |
Formulations | Opacity |
---|---|
FL | 1.50 ± 0.03 d |
FW-L0.5 | 1.48 ± 0.02 d |
FW-L0.75 | 2.21 ± 0.02 a |
FW-L0.5-CNC1 | 1.74 ± 0.04 d |
FW-L0.75-CNC1 | 1.44 ± 0.03 c |
FW-L0.5-CNC5 | 1.71 ± 0.06 c |
FW-L0.75-CNC5 | 1.93 ± 0.01 b |
Formulations | Thickness | WVP | WAC | Xw | Sw |
---|---|---|---|---|---|
FL | 228.14 ± 0.035 ab | 1.79 ± 0.08 b | 0.60 ± 0.03 a | 0.180 ± 0.07 a | 0.38 ± 0.06 ab |
FW-L0.5 | 235.14 ± 0.057 ab | 1.80 ± 0.035 b | 0.40 ± 0.03 c | 0.183 ± 0.01 a | 0.36 ± 0.07 ab |
FW-L0.75 | 209.14 ± 0.042 b | 1.20 ± 0.09 c | 0.55 ± 0.05 ab | 0.184 ± 0.07 a | 0.45 ± 0.08 a |
FW-L0.5-CNC1 | 237.28 ± 0.015 ab | 2.10 ± 0.08 a | 0.60 ± 0.06 a | 0.146 ± 0.08 c | 0.29 ± 0.03 b |
FW-L0.75-CNC1 | 238.00 ± 0.019 ab | 2.16 ± 0.08 a | 0.46 ± 0.07 bc | 0.167 ± 0.04 b | 0.26 ± 0.08 b |
FW-L0.5-CNC05 | 250.28 ± 0.030 a | 1.16 ± 0.02 c | 0.62 ± 0.09 a | 0.146 ± 0.03 c | 0.30 ± 0.03 b |
FW-L0.75-CNC05 | 210.85 ± 0.022 b | 1.19 ± 0.01 c | 0.61 ± 0.10 a | 0.164 ± 0.04 b | 0.27 ± 0.01 b |
Formulations | EM (MPa) | TS (MPa) | E (%) |
---|---|---|---|
FL | 20.2 ± 0.5 f | 6.1 ± 0.2 d | 230 ± 3 a |
FW-L0.5 | 22.1 ± 0.4 cd | 6.7 ± 0.3 c | 203 ± 5 bc |
FW-L0.75 | 21.3 ± 0.2 e | 6.4 ± 0.3 cd | 211 ± 3 b |
FW-L0.5-CNC1 | 22.5 ± 0.3 c | 6.9 ± 0.2 c | 198 ± 2 c |
FW-L0.75-CNC1 | 21.6 ± 0.2 de | 6.5 ± 0.3 cd | 208 ± 5 b |
FW-L0.5-CNC5 | 24.2 ± 0.4 a | 9.3 ± 0.2 a | 185 ± 3 d |
FW-L0.75-CNC5 | 23.4 ± 0.2 b | 8.3 ± 0.3 b | 197 ± 5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Cantillo, D.; López-Padilla, A.; Ortega-Toro, R. Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals. J. Compos. Sci. 2025, 9, 249. https://doi.org/10.3390/jcs9050249
Carmona-Cantillo D, López-Padilla A, Ortega-Toro R. Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals. Journal of Composites Science. 2025; 9(5):249. https://doi.org/10.3390/jcs9050249
Chicago/Turabian StyleCarmona-Cantillo, Diana, Alexis López-Padilla, and Rodrigo Ortega-Toro. 2025. "Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals" Journal of Composites Science 9, no. 5: 249. https://doi.org/10.3390/jcs9050249
APA StyleCarmona-Cantillo, D., López-Padilla, A., & Ortega-Toro, R. (2025). Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals. Journal of Composites Science, 9(5), 249. https://doi.org/10.3390/jcs9050249