On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness
4. Stability Analysis
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magin, R.L. Fractional Calculus in Bioengineering Begell House Publishers; Begell House, Inc.: Danbury, CT, USA, 2006. [Google Scholar]
- Podlubny, I. Fractional differential equations. Math. Sci. Eng. 1999, 198, 41–119. [Google Scholar]
- Magin, R.L.; Ingo, C. Entropy and information in a fractional order model of anomalous diffusion. IFAC Proc. Vol. 2012, 45, 428–433. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.; Joyeux, R. An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1980, 1, 15–29. [Google Scholar] [CrossRef]
- Gray, H.L.; Zhang, N.F. On a new definition of the fractional difference. Math. Comput. 1988, 50, 513–529. [Google Scholar] [CrossRef]
- Hosking, J.R.M. Fractional differencing. Biometrika 1981, 68, 165–176. [Google Scholar] [CrossRef]
- Isaacs, G.L. Exponential laws for fractional differences. Math. Comput. 1980, 35, 933–936. [Google Scholar] [CrossRef]
- Khan, A.; Alshehri, H.M.; Abdeljawad, T.; Al-Mdallal, Q.M.; Khan, H. Stability analysis of fractional nabla difference COVID-19 model. Res. Phys. 2021, 22, 103888. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. A Transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007, 14, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Discrete fractional differences with nonsingular discrete Mittag–Leffler kernels. Adv. Differ. Equ. 2016, 2016, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Fractional difference operators with discrete generalized Mittag–Leffler kernels. Chaos Solitons Fractals 2019, 126, 315–324. [Google Scholar] [CrossRef]
- Tavares, D.; Almeida, R.; Torres, D.F. Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Tavares, D.; Almeida, R.; Torres, D.F. Constrained fractional variational problems of variable order. IEEE/CAA J. Autom. Sin. 2017, 4, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Kaslik, E.; Rădulescu, I.R. Stability and bifurcations in fractional-order gene regulatory networks. Appl. Math. Comput. 2022, 421, 126916. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Gao, R.; Xu, C.; Shang, Y. New exploration on bifurcation in fractional-order genetic regulatory networks incorporating both type delays. Eur. Phys. J. Plus. 2022, 137, 1–31. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Wang, Z.; Liu, Y.; Alsaadi, F.E. An overview of stability analysis and state estimation for memristive neural networks. Neurocomputing 2020, 391, 1–12. [Google Scholar] [CrossRef]
- Mellah, M.; Ouannas, A.; Batiha, I.M. A General method for stabilizing the fractional-order discrete neural networks via linear control law. Nonlinear Stud. 2022, 29, 993–1002. [Google Scholar]
- Karoun, R.C.; Ouannas, A.; Horani, M.A.; Grassi, G. The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order. Fractal Fract. 2022, 6, 575. [Google Scholar] [CrossRef]
- Abbes, A.; Ouannas, A.; Shawagfeh, N.; Khennaoui, A.A. Incommensurate Fractional Discrete Neural Network: Chaos and complexity. Eur. Phys. J. Plus 2022, 137, 1–15. [Google Scholar] [CrossRef]
- Gasri, A.; Ouannas, A.; Khennaoui, A.A.; Grassi, G.; Oussaeif, T.E.; Pham, V.T. Chaotic fractional discrete neural networks based on the Caputo h-difference operator: Stabilization and linear control laws for synchronization. Eur. Phys. J. Spec. Top. 2022, 231, 1–15. [Google Scholar] [CrossRef]
- Mellah, M.; Ouannas, A.; Khennaoui, A.A.; Grassi, G. Fractional Discrete Neural Networks with Different Dimensions: Coexistence of Complete Synchronization, Antiphase Synchronization and Full State Hybrid Projective Synchronization. Nonlinear Dyn. Sys. Theory 2021, 21, 410. [Google Scholar]
- Xu, Y.; Yu, J.; Li, W.; Feng, J. Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links. Appl. Math. Comput. 2021, 389, 125498. [Google Scholar] [CrossRef]
- Du, F.; Lu, J.G. New criteria for finite-time stability of fractional order memristor-based neural networks with time delays. Neurocomputing 2021, 421, 349–359. [Google Scholar] [CrossRef]
- Wu, Z. Multiple asymptotic stability of fractional-order quaternion-valued neural networks with time-varying delays. Neurocomputing 2021, 448, 301–312. [Google Scholar] [CrossRef]
- You, X.; Song, Q.; Zhao, Z. Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw. 2020, 123, 248–260. [Google Scholar] [CrossRef]
- You, X.; Song, Q.; Zhao, Z. Global Mittag–Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw. 2020, 122, 382–394. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Huang, C.; Niezabitowski, M.; Bagdasar, O. Stability of discrete-time fractional-order time-delayed neural networks in complex field. Math. Meth. Appl. Sci. 2021, 44, 419–440. [Google Scholar] [CrossRef]
- Hioual, A.; Oussaeif, T.E.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Momani, S. New results for the stability of fractional-order discrete-time neural networks. Alex. Eng. J. 2022, 61, 10359–10369. [Google Scholar] [CrossRef]
- Huang, L.L.; Park, J.H.; Wu, G.C.; Mo, Z.W. Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 2020, 370, 112633. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Grassi, G.; Oussaeif, T.E. Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks. J. Comput. Appl. Math. 2022, 423, 114939. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Oussaeif, T.E.; Grassi, G.; Batiha, I.M.; Momani, S. On Variable-Order Fractional Discrete Neural Networks: Solvability and Stability. Fractal Fract. 2022, 6, 119. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mert, R.; Torres, D.F. Variable order Mittag–Leffler fractional operators on isolated time scales and application to the calculus of variations. In Fractional Derivatives with Mittag–Leffler Kernel; Springer: Cham, Switzerland, 2019; pp. 35–47. [Google Scholar]
- Franco-Pérez, L.; Fernández-Anaya, G.; Quezada-Téllez, L.A. On stability of nonlinear nonautonomous discrete fractional Caputo systems. J. Math. Anal. Appl. 2020, 487, 124021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almatroud, O.A.; Hioual, A.; Ouannas, A.; Sawalha, M.M.; Alshammari, S.; Alshammari, M. On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability. Fractal Fract. 2023, 7, 118. https://doi.org/10.3390/fractalfract7020118
Almatroud OA, Hioual A, Ouannas A, Sawalha MM, Alshammari S, Alshammari M. On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability. Fractal and Fractional. 2023; 7(2):118. https://doi.org/10.3390/fractalfract7020118
Chicago/Turabian StyleAlmatroud, Othman Abdullah, Amel Hioual, Adel Ouannas, Mohammed Mossa Sawalha, Saleh Alshammari, and Mohammad Alshammari. 2023. "On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability" Fractal and Fractional 7, no. 2: 118. https://doi.org/10.3390/fractalfract7020118
APA StyleAlmatroud, O. A., Hioual, A., Ouannas, A., Sawalha, M. M., Alshammari, S., & Alshammari, M. (2023). On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability. Fractal and Fractional, 7(2), 118. https://doi.org/10.3390/fractalfract7020118