Stability Properties of Multi-Term Fractional-Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- i.
- , if , or
- ii.
- if .
- i.
- The trivial solution of (1) is called stable if for any there exists such that for every satisfying we have for any ;
- ii.
- The trivial solution of (1) is called asymptotically stable if it is stable and there exists such that whenever ;
- iii.
- Let . The trivial solution of (1) is called-asymptotically stable if it is stable and there exists such that for any one has:
3. General Fractional-Order-Independent Stability and Instability Results
4. Two-Term Fractional-Order Differential Equations
5. Three-Term Fractional-Differential Equations
- i.
- The curve is the graph of a smooth, decreasing, convex bijective function in the -plane;
- ii.
- The curve lies outside the first quadrant of the -plane.
6. Four-Term Fractional-Differential Equations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cottone, G.; Paola, M.D.; Santoro, R. A novel exact representation of stationary colored Gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 2010, 43, 085002. [Google Scholar] [CrossRef]
- Engheia, N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 1997, 39, 35–46. [Google Scholar] [CrossRef]
- Henry, B.; Wearne, S. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 2002, 62, 870–887. [Google Scholar] [CrossRef] [Green Version]
- Heymans, N.; Bauwens, J.C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 1994, 33, 210–219. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Relaxation-Oscillation and Fractional Phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Torvik, P.; Bagley, R. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus. Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Vienna, Austria, 1997. [Google Scholar]
- Seredyńska, M.; Hanyga, A. Nonlinear differential equations with fractional damping with applications to the 1dof and 2dof pendulum. Acta Mech. 2005, 176, 169–183. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Li, Z.; Zhu, W. Stationary response of Duffing oscillator with hardening stiffness and fractional derivative. Int. J. Non-Linear Mech. 2013, 48, 44–50. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, C.; Cheng, X.; Li, H. Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise. Phys. Stat. Mech. Its Appl. 2016, 459, 86–91. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Čermák, J.; Kisela, T. Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case. Fract. Calc. Appl. Anal. 2015, 18, 437. [Google Scholar] [CrossRef]
- Čermák, J.; Kisela, T. Stability properties of two-term fractional differential equations. Nonlinear Dyn. 2015, 80, 1673–1684. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, Y.Q. Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders. Comput. Math. Appl. 2012, 64, 3053–3058. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Bhalekar, S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 2008, 345, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Siegmund, S.; Tuan, H. Asymptotic behavior of solutions of linear multi-order fractional differential systems. Fract. Calc. Appl. Anal. 2017, 20, 1165–1195. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, F. A survey on the stability of fractional differential equations. Eur. Phys. J.-Spec. Top. 2011, 193, 27–47. [Google Scholar] [CrossRef]
- Radwan, A.; Soliman, A.; Elwakil, A.; Sedeek, A. On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 2009, 40, 2317–2328. [Google Scholar] [CrossRef]
- Ahmad, D.; Agarwal, R.P.; ur Rahman, G. Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations. Symmetry 2022, 14, 1342. [Google Scholar] [CrossRef]
- Deng, W.; Li, C.; Guo, Q. Analysis of fractional differential equations with multi-orders. Fractals 2007, 15, 173–182. [Google Scholar] [CrossRef]
- Brandibur, O.; Kaslik, E. Stability analysis of multi-term fractional-differential equations with three fractional derivatives. J. Math. Anal. Appl. 2021, 495, 124751. [Google Scholar] [CrossRef]
- Lorenzo, C.; Hartley, T.; Malti, R. Application of the principal fractional meta-trigonometric functions for the solution of linear commensurate-order time-invariant fractional differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120151. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional calculus, integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; CISM Courses and Lecture Notes; Carpinteri, A., Mainardi, F., Eds.; Springer: Vienna, Austria, 1997; Volume 378, pp. 223–276. [Google Scholar]
- Doetsch, G. Introduction to the Theory and Application of the Laplace Transformation; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Čermák, J.; Kisela, T. Exact and discretized stability of the Bagley–Torvik equation. J. Comput. Appl. Math. 2014, 269, 53–67. [Google Scholar] [CrossRef]
- Mani, A.K.; Narayanan, M. Analytical and numerical solution of an n-term fractional nonlinear dynamic oscillator. Nonlinear Dyn. 2020, 100, 999–1012. [Google Scholar] [CrossRef]
- Diethelm, K.; Luchko, Y. Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl 2004, 6, 243–263. [Google Scholar]
- Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandibur, O.; Kaslik, É. Stability Properties of Multi-Term Fractional-Differential Equations. Fractal Fract. 2023, 7, 117. https://doi.org/10.3390/fractalfract7020117
Brandibur O, Kaslik É. Stability Properties of Multi-Term Fractional-Differential Equations. Fractal and Fractional. 2023; 7(2):117. https://doi.org/10.3390/fractalfract7020117
Chicago/Turabian StyleBrandibur, Oana, and Éva Kaslik. 2023. "Stability Properties of Multi-Term Fractional-Differential Equations" Fractal and Fractional 7, no. 2: 117. https://doi.org/10.3390/fractalfract7020117
APA StyleBrandibur, O., & Kaslik, É. (2023). Stability Properties of Multi-Term Fractional-Differential Equations. Fractal and Fractional, 7(2), 117. https://doi.org/10.3390/fractalfract7020117