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Abstract: Given the recent advances regarding the studies of discrete fractional calculus, and the fact
that the dynamics of discrete-time neural networks in fractional variable-order cases have not been
sufficiently documented, herein, we consider a novel class of discrete-time fractional-order neural
networks using discrete nabla operator of variable-order. An adequate criterion for the existence
of the solution in addition to its uniqueness for such systems is provided with the use of Banach
fixed point technique. Moreover, the uniform stability is investigated. We provide at the end two
numerical simulations illustrating the relevance of the aforementioned results.

Keywords: discrete fractional variable-order neural networks; discrete nabla variable-orde fractional
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1. Introduction

Fractional calculus has drawn the attention of an increasing number of researchers over
the years, and it has seen applications in a variety of engineering and applied sciences [1–3].
Many fractional models have recently been presented, demonstrating the importance
of fractional calculus. In aiming to provide better-behaved kernels of extra fractional
operators, several fractional calculus researchers recently presented and studied novel
non-local fractional operators with nonsingular kernels which were proved to be applicable
in real world issues [4,5].

Despite that many research works in the literature about continuous fractional calculus
provide various solid mathematical theories, there has not been much interest when it
comes to discrete fractional calculus development (see [6–10]). However, in the last five to
seven years, the focus in improving discrete fractional calculus has been remarkably raising.
This progression has shown that discrete fractional calculus is now the most modern and
extensively used model of fractional calculus which contains a lot of unforeseen challenges
and performance difficulties [11–14]. AB-fractional operators are known to be fundamental
operators regarding fractional calculus; for that purpose, it has historically been found
that they have been used to build current operators besides their related characterizations.
These operators have been conceptually presented further by proposing and studying
discrete versions of such fractional operators [15,16]. The reader who is intrigued in the
purpose and relevance of considering variable order operators should refer to [17,18].

In the simulation of physics and engineering systems, fractional neural networks have
shown to be highly efficient and precise. Several engineering problems, such as digital
signal processing or industrial system control and diagnostics, rely on such models, and
numerous studies have been conducted to investigate various aspects of these systems. For
example, in [19], the stability and bifurcation of fractional-order gene regulatory networks

Fractal Fract. 2023, 7, 118. https://doi.org/10.3390/fractalfract7020118 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7020118
https://doi.org/10.3390/fractalfract7020118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-6944-1689
https://orcid.org/0000-0002-4030-9083
https://doi.org/10.3390/fractalfract7020118
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7020118?type=check_update&version=2


Fractal Fract. 2023, 7, 118 2 of 11

was reported. Furthermore, bifurcation in fractional-order genetic regulatory networks
with both types of delays was investigated in [20]. In [21] a summary of various fractional
neural network dynamics is presented. On the other hand, discrete time fractional-order
neural networks are networks that work with data on isolated temporal scales. They are
characterized by more distinct and relatively complicated features comparing to continuous
neural networks with fractional order. Discrete time fractional-order neural networks have
new capabilities and superior performance, allowing them to handle issues that their
continuous counterparts can not. As a result, studying the dynamical features of discrete-
time neural networks involving fractional-order is crucial (see [22–26]).

Stability theory is a broad field in engineering and various sciences that focuses on
studying the behavior of dynamical patterns of systems that are either linear or non-linear.
On the one hand, significant advances have been accomplished in the past few years upon
the stability theory of fractional order neural networks [27–29]. Nevertheless, the equivalent
theory of discrete-time fractional-order neural-network has been interestingly evolving.
Indeed, among the various forms of stability addressed for this type of system one can
find the finite-time stability which was studied in [30] for a discrete fractional-order neural
networks with complex-valued and time delays. In addition, Mittag–Leffler stability for
fractional discrete-time neural networks utilizing fixed point approach was explored in [31].
A class of fractional-order discrete-time complex-valued neural networks with temporal
delays was presented and a several stability criteria were discussed in [32]. Furthermore,
in [33], the asymptotic stability of discrete fractional order neural networks and presents a
unique model of variable order neural networks was discussed.

It is important to note that there has not been enough results related to studies of
discrete neural-networks with fractional variable-order. A form of variable order recurrent
neural network under the Caputo h-discrete fractional operator applying fixed point
methods and Mittag–Leffler stability requirements was explored in [34]. Additionally,
in [35], a novel variable order discrete neural network using the nabla variable-order
operator, as well as an asymptotic stability study of the proposed model was offered.
Moreover, another type of stability known as Ulam Hyers stability for a class of discrete
variable order neural networks was addressed in [36]. However, there are not enough
studies in literature describing the stability of discrete-time fractional variable-order neural-
network with nabla discrete Mittag–Leffler kernels. As a result, establishing suitable
criteria for such neural networks is both required and difficult. Motivated by the preceding
considerations, and since the dynamics of discrete-time fractional variable-order neural
networks have been lucking explanation and investigation, this work is one of the papers
to do so, the purpose of this research is to offer adequate criteria for studying the uniform
stability related to the considered discrete-time neural-networks.

This work includes the following sections: Section 2 involves useful preliminaries,
definitions and related lemmas.In Section 3, a few results on both existence and uniqueness
of the solutions of the considered discrete-time neural networks are presented via Banach
fixed point technique. Section 4 presents our major conclusions, which is a constraint on
the uniform stability of the addressed neural networks. Last but not least, in Section 5, we
demonstrate the significance of the key findings using two numerical examples.

2. Preliminaries

In this section, the definitions for discrete fractional calculus are presented, together
with the following notations:

Ns0 = {s0, s0 + 1, s0 + 2, ...}, NT
s0
= {s0, s0 + 1, s0 + 2, ..., T}. (1)
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Definition 1 ([37]). For 0 < Λ(s) ≤ 1, t ∈ Ns0 . Let be a function Φ : Ns0 → R, We define the
nabla fractional sum with order Λ(s)

s0∇
−Λ(s)
s Φ(s) =

1
Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1Φ(k), ρ(k) = k− 1, s ∈ Ns0+1, (2)

where the rising function is as follows

sr =
Γ(s + r)

Γ(s)
, r ∈ R. (3)

Definition 2 ([37]). For 0 < Λ(s) <
1
2

, t ∈ Ns0 and a function Φ : Ns0 → R, the left nabla
ABC-fractional diffrence is defined by(

ABC
s0
∇Λ(s)

t Φ
)
(s) =

B(Λ(s))
1−Λ(s)

s

∑
k=s0+1

EΛ(s)

(
−Λ(s)

1−Λ(s)
, s− ρ(k)

)
∇Φ(s), s ∈ Ns0+1, (4)

where

B(Λ(s)) = 1−Λ(s) +
Λ(s)

Γ(Λ(s))
, (5)

and Ea,b(η, z) represents the nabla discrete Mittag–Leffler function

Ea,b(η, z) = ∑
k≥0

ηk zka+b−1

Γ(ak + b)
; |η| < 1; a, b, z ∈ C and Re(a) > 0.

Definition 3 ([37]). For Λ(s) ∈ (0, 1) the left fractional sum of discrete nabla ABC-fractional
variable-order operator is described by(

AB
s0
∇−Λ(s)

s Φ
)
(s) =

1−Λ(s)
B(Λ(s))

Φ(s) +
Λ(s)

B(Λ(s)) s0∇
−Λ(s)
s Φ(s). (6)

Lemma 1. Let be s ∈ Ns0+1 the following hold

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1 =
(s− s0)

Λ(s)

Λ(s)
. (7)

Proof. To begin, we have

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1 =
s−1

∑
k=s0+1

(s− ρ(k))Λ(s)−1 + 1Λ(s)−1,

=
s−1

∑
k=s0+1

Γ(s− k + Λ(s))
Γ(s− k + 1)

+ Γ(Λ(s)).

Since
Γ(κ + 1)

Γ(κ − ι + 1)
=

1
ι + 1

{
κ + 2

κ − ι + 1
− κ + 1

κ − ι

}
,

we set κ = s− k + Λ(s)− 1, ι = Λ(s)− 1, and we obtain

Γ(s− k + Λ(s))
Γ(s− k + 1)

=
1

Λ(s)

{
Γ(s− k + Λ(s) + 1)

Γ(s− k + 1)
− Γ(s− k + Λ(s))

Γ(s− k)

}
.
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For all k ∈ {s0 + 1, ..., s− 1} we obtain

s−1

∑
k=s0+1

Γ(s− k + Λ(s))
Γ(s− k + 1)

=
1

κ(s)
{
(

Γ(s− s0 + Λ(s))
Γ(s− s0)

− Γ(s− s0 + Λ(s)− 1)
Γ(s− s0 − 1)

)
+

(
Γ(s− s0 + Λ(s)− 1)

Γ(s− s0 − 1)
− Γ(s− s0 + Λ(s)− 2)

Γ(s− s0 − 2)

)
+

(
Γ(s− s0 + Λ(s)− 2)

Γ(s− s0 − 2)
− Γ(s− s0 + Λ(s)− 3)

Γ(s− s0 − 3)

)
...

+

(
Γ(Λ(s) + 2)

Γ(2)
− Γ(Λ(s) + 1)

Γ(1)

)
},

Therefore, we obtain

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1 =
1

Λ(s)

(
Γ(s− s0 + Λ(s))

Γ(s− s0)
− Γ(Λ(s) + 1)

)
+ Γ(Λ(s)),

=
1

Λ(s)
Γ(s− s0 + Λ(s))

Γ(s− s0)
,

=
(s− s0)

Λ(s)

Λ(s)
.

Which concludes the proof.

3. Existence and Uniqueness

The following variable-order fractional discrete-time neural network is proposed

ABC
s0
∇Λ(s)

s ξ(s) = −Dξ(s) + Bg(s, ξ(s)) + I, (8)

were ABC
s0
∇Λ(s)

s is the ABC discrete nabla difference operator of order Λ(s), 0 < Λ(s) < 1,
ξ(s) = (ξ1(s), ξ2(s), ..., ξn(s))T ∈ Rn is the state vector, D = diag(d1, d2, ..., dn) ∈ Rn∗n is
the self-feedback connection weight with di > 0, B = (bij)n∗n ∈ Rn∗n is the connection
weight matrix, g(s, ξ(s)) = (g1(s, ξ(s)), g2(s, ξ(s)), ..., gn(s, ξ(s)))T ∈ C(Ns0+1,Rn) is the
acctivation function, I = (I1, ..., In)T the vector of external inputs.

Assumption 1 (A1). For all s ∈ Ns0+1, gi(s, u) is a lipschitz continuous function with respect to
u, i.e.,

∃li ∈ R∗+ : |gi(s, u)− gi(s, v)| ≤ li|u− v|; ∀u, v ∈ R, (9)

where l = maxi=1,...,n{li}.

Assumption 2 (A2). For all t ∈ NT
s0+1 = {s0 + 1, s0 + 2, ..., T}, there is Q ∈ R∗+ and Q < 1

such that

Q =
Γ(γ)(γ1 + lγ2)

Γ(γ)(1− β) + γ

{
(1− γ) +

(T − s0)
β

Γ(β)

}
, (10)

where
γ1 = ‖D‖∞, γ2 = ‖B‖∞, γ ≤ Λ(s) ≤ β.

Theorem 1. If (A1) and (A2) hold; then, the uniqueness of the solution of (8) is provided.

Proof. According to the fractional discrete variable-order calculus properties, a solution
of (8) is equal to:
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ξ(s) = ξ0 +
1−Λ(s)
B(Λ(s))

[−Dξ(s) + Bg(t, ξ(s)) + I] +
Λ(s)

B(Λ(s)) s0∇
−Λ(s)
s [−Dξ(s) + Bg(s, ξ(s)) + I]. (11)

With the use of the following norm

‖ξ‖ = sup
s∈NT

s0+1

‖ξ(s)‖ and ‖ξ(s)‖ = max
{i=1,...,n}

|ξi(s)|,

Problem (11) can be converted into a fixed problem. Consider the following mapping:

Φξ(s) =ξ0 +
1−Λ(s)
B(Λ(s))

[−Dξ(s) + Bg(t, ξ(s)) + I] (12)

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[−Dξ(k) + Bg(k, ξ(k)) + I], (13)

where Φξ = (Φ1ξ1, Φ2ξ2, ..., Φnξn) and Φiξi is described by:

Φiξi(s) =ξi0 +
1−Λ(s)
B(Λ(s))

[−diξi(s) +
n

∑
j=1

bijgj(s, ξ j(s)) + Ii]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[−diξi(k) +
n

∑
j=1

bijgj(k, ξ j(k)) + Ii].

For any two distinct functions ξ, µ ∈ Rn we have

|Φiξi(s)−Φiµi(s)| = |
1−Λ(s)
B(Λ(s))

[−di(ξi(s)− µi(s)) +
n

∑
j=1

bij(gj(s, ξ j(s))− gj(s, µj(s)))]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[−di(ξi(k)− µi(k))

+
n

∑
j=1

bij(gj(k, ξ j(k))− gj(k, µj(k)))]|,

≤ 1−Λ(s)
B(Λ(s))

[di|ξi(s)− µi(s)|+
n

∑
j=1
|bij|lj|ξ j(s))− µj(s)|]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[di|ξi(k)− µi(k))|+
n

∑
j=1
|bij|lj|ξ j(k))− µj(k)|],

≤ 1−Λ(s)
B(Λ(s))Γ(Λ(s))

[di|ξi(s)− µi(s)|+
n

∑
j=1
|bij|lj|ξ j(s))− µj(s)|]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[di|ξi(k)− µi(k))|+
n

∑
j=1
|bij|ljvξ j(k))− µj(k)|],

which leads us to

max
{i=1,...,n}

|Φiξi(s)−Φiµi(s)| ≤
1−Λ(s)
B(Λ(s))

[γ1 max
{i=1,...,n}

|ξi(s)− µi(s)|

+ γ2l max
{i=1,...,n}

|ξi(s))− µi(s)|]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1[γ1 max
{i=1,...,n}

|ξi(k)− µi(k))|

+ γ2l max
{i=1,...,n}

|ξi(k))− µi(k)|].
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Using Lemma 1, we conclude that

‖Φξ−Φµ‖ = sup
s∈NT

s0+1

{
max
{i=1,...,n}

|Φiξi(s)−Φiµi(s)|
}

,

≤

 (1− γ)Γ(γ)
Γ(γ)(1− β) + γ

+
βΓ(γ)

Γ(β)(Γ(γ + 1)(1− β) + γ)
sup

s∈NT
s0+1

s

∑
k=s0+1

(s− ρ(k))Λ(s)−1


[γ1 + lγ2]‖ξ − µ‖,

≤ {(1− γ) +
1

Γ(β)
sup

s∈NT
s0+1

(s− s0)
Λ(s) Γ(γ)[γ1 + lγ2]

Γ(γ)(1− β) + γ
‖ξ − µ‖,

≤
{
(1− γ) +

(T − s0)
β

Γ(β)

}
Γ(γ)[γ1 + lγ2]

Γ(γ)(1− β) + γ
‖ξ − µ‖ = Q‖ξ − µ‖.

According to (A2), we know that Q < 1, as a result, the mapping Φ is a contraction
on C(NT

s0+1,Rn). This means that problem (12) has a unique fixed point according to
the Banach fixed point theorem, implying the uniqueness of the solution of (8), which
completes our demonstration.

4. Stability Analysis

Definition 4 ([38]). The initial time of the discrete variable-order neural networks system (8) with
nabla discrete Mittag–Leffler kernals is set to s0. (8) is called uniformly stable if for any ε > 0, there
are two constants δε and T, 0 < δε < ε, T > 0, so that for s ∈ NT

s0+1 = {s0 + 1, s0 + 2, ..., T},
and for any two solutions ξ(s, s0, φ) and µ(s, s0, ψ) with the initial conditions ξ0 = φ and µ0 = ψ
such that ‖φ− ψ‖ < δε implies ‖ξ − µ‖ < ε.

Theorem 2. Suppose that (A1) and (A2) are valid, if

1
1−Q

<
ε

δ
, (14)

then, (8) is uniformly stable.

Proof. Let there be two different solutions ξ(s), µ(s) ∈ Rn of system (8) with distinct initial
conditions as ξ0 and µ0

Where φ = ξ0, Φ = µ0 which lead us to

ABC
s0
∇Λ(s)

s (ξ(s)− µ(s)) = φ− ψ− D(ξ(s)− µ(s)) + B(g(s, ξ(s))− g(s, µ(s))), (15)

which is equivalent to

ξ(s)− µ(s) = φ− ψ +
1−Λ(s)
B(Λ(s))

[−D(ξ(s)− µ(s)) + B(g(s, ξ(s)− g(s, µ(s)))]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(−ρ(k)Λ(s)−1)[−D(ξ(k)− µ(k))

+ B(g(k, ξ(k)− g(k, µ(k)))],

Then, using (A1)m we obtain the following
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|ξi(s)− µi(s)| = |φi − ψi +
1−Λ(s)
B(Λ(s))

[−di(ξi(s)− µi(s)) +
n

∑
j=1

bij(gj(s, ξ j(s)− gj(s, µj(s)))]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k)Λ(s)−1)[−di(ξi(k)− µi(k))

+
n

∑
j=1

bij(gj(k, ξ j(k)− gj(k, µj(k)))]|,

≤ |φi − ψi|+
1−Λ(s)
B(Λ(s))

| − di(ξi(s)− µi(s)) +
n

∑
j=1

bij(gj(s, ξ j(s)− gj(s, µj(s)))|

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

st− ρ(k)Λ(s)−1)| − di(ξi(k)− µi(k))

+
n

∑
j=1

bij(gj(k, ξ j(k)− gj(k, µj(k)))]|,

≤ |φi − ψi|+
1−Λ(s)
B(Λ(s))

[di|ξi(s)− µi(s)|+
n

∑
j=1

lj|bij||ξi(s)− µi(s)|]

+
Λ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k)Λ(s)−1)[di|(ξi(k)− µi(k)|

+
n

∑
j=1

lj|bij||ξi(k)− µi(k)|].

Therefore, using (A2) we have

‖ξ − µ‖ ≤ ‖φ− ψ‖+ sup
s∈NT

s0+1

{
1−Λ(s)
B(Λ(s))

}
[γ1 + lγ2]‖ξ − µ‖

+ sup
s∈NT

s0+1

{
κ(s)

B(Λ(s))Γ(Λ(s))

s

∑
k=s0+1

(s− ρ(k)Λ(s)−1)

}
[γ1 + lγ2]‖ξ − µ‖,

≤ ‖φ− ψ‖+ { (1− γ)Γ(γ)
Γ(γ)(1− β + γ

[γ1 + lγ2]

+
Γ(γ)

Γ(β)(Γ(γ + 1)(1− β) + γ)
[γ1 + lγ2] sup

s∈NT
s0+1

(s− s0)
Λ(s)‖ξ − µ‖,

= ‖φ− ψ‖+ Γ(γ)(γ1 + lγ2)

Γ(γ)(1− β) + γ

{
(1− γ) +

(T − s0)
β

Γ(β)

}
‖ξ − µ‖

<
1

1− Γ(γ)(γ1 + lγ2)

Γ(γ)(1− β) + γ

{
(1− γ) +

(T − s0)
β

Γ(β)

}‖φ− ψ‖,

we conclude that
‖ξ − µ‖ ≤ 1

1−Q
‖φ− ψ‖.

We reach the conclusion that for any ε > 0, there exists δε = (1−Q)ε where if ‖φ− ψ‖ < δ
then ‖ξ − µ‖ < ε and according to definition 4, (8) is uniformly stable, the proof is
achieved.

5. Numerical Simulations

Example 1. Let be the two dimensional neural networks of discrete fractional variable-order
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{
ABC
s0
∇Λ(s)

s ξ1(s) = −d1ξ1(s) + b11 sin(ξ1(s)) + b12 sin(ξ2(s)) + I1,
ABC
t0
∇Λ(s)

s ξ2(s) = −d2ξ2(s) + b21 sin(ξ1(s)) + b22 sin(ξ2(s)) + I2.
(16)

with the following parameters b11 = 0.2, b12 = −0.3, b21 = 0.4, b22 = −0.1, d1 =

0.2, d2 = 0.2, I1 = 0.1, I2 = 0.1, Λ(s) =
| ln( 3

s+5 )|
3(s + 1)

, s ∈ [0, 50] and the initial condition

ξ1(0) = −10, ξ2(0) = −7.

The numerical solution of (16) is given by

ξ1(i) = ξ1(0) +
1−Λ(i)
B(Λ(i))

[−d1ξ1(i) + b11 sin(ξ1(i)) + b12 sin(ξ2(i)) + I1]

+
Λ(i)

B(Λ(i))) ∑i
k=1

Γ(i− k + Λ(i))
Γ(i− k + 1)

(−d1ξ1(k) + b11 sin(ξ1(k)) + b12 sin(ξ2(k)) + I1),

ξ2(i) = ξ2(0) +
1−Λ(i)
B(Λ(i))

[−d2ξ2(i) + b21 sin(ξ1(i)) + b22 sin(ξ2(i)) + I2]

+
Λ(i)

B(Λ(i))) ∑i
k=1

Γ(i− k + Λ(i))
Γ(i− k + 1)

(−d2ξ2(k) + b21 sin(ξ1(k)) + b22 sin(ξ2(k)) + I2),

B(Λ(i)) = 1−Λ(i) +
Λ(i)

Γ(Λ(i))
, i ≥ 1.

We can check that the parameters satisfy assumptions (A1)–(A2) and the condition in Theorems 1
and 2. The behavior of the solutions ξ1(t) and ξ2(t) is illustrated in Figure 1, where we can notes
that each tends to zero for s→ +∞ and the solution is uniformly stable.
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Figure 1. Numerical solution of neural networks (16).

Example 2. Let us consider the following discrete fractional variable-order neural neutwork:
ABC
s0
∇Λ(s)

s ξ1(s) = −d1ξ1(s) + b11 tanh(ξ1(s)) + b12 tanh(ξ2(s)) + b13 tanh(ξ3(s)) + I1,
ABC
s0
∇Λ(s)

s ξ2(s) = −d2ξ2(s) + b21 tanh(ξ1(s)) + b22 tanh(ξ2(s)) + b23 tanh(ξ3(s)) + I2,
ABC
s0
∇Λ(s)

s ξ3(s) = −d3ξ3(s) + b31 tanh(ξ1(s)) + b32 tanh(ξ2(s)) + b33 tanh(ξ3(s)) + I3,

(17)

where

D =

0.1 0 0
0 0.1 0
0 0 0.1

, B =

−0.4 − 0.1 − 0.2
0.1 − 0.4 0.1
0.4 0.1 0.2

, I =

0
0
0

.

Since assumptions (A1) and (A2) are clearly satisfied, we can use formulas (18) to have the
numerical solution shown in Figure 2 along with the initial condition ξ(0) = (0.1, 0.1, 0.1)T , which
shows the uniform stability of the considered neural network.
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ξ(i) = ξ(0) +
1−Λ(i)
B(Λ(i))

[−Dξ(i) + B tanh(ξ(i))]

+
Λ(i)

B(Λ(i))) ∑i
k=1

Γ(i− k + Λ(i))
Γ(i− k + 1)

(−Dξ(k) + B tanh(ξ(k))),

B(Λ(i)) = 1−Λ(i) +
Λ(i)

Γ(Λ(i))
, i ≥ 1.

(18)
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Figure 2. Numerical solution of discrete time variable-order neural networks (17).

6. Conclusions

We address, in this work, the problem of uniform stability for a class of discrete
fractional variable-order neural-networks with nabla discrete Mittag–Leffler kernels. In
addition, for this type of neural network, we founded essential criterion for the existence
and uniqueness of the solution. Moreover, two and three dimensional examples including
numerical solutions and simulations are available to highlight the efficacy of our findings.
In addition, the system treated in this study is significantly more complex than the ones
investigated in previous works, and this form of discrete neural network under the variable-
order fractional nabla operator with nonsingular and nonlocal kernel has never been
examined before. As a result, when compared to previous results, the discussions in this
study are original and improved. Furthermore, this research may result in the development
of innovative discrete-time systems with variable order. Furthermore, we will consider
additional applications in this research area, such as modeling and analysis in various fields
and special features such as systems chaos, stabilization, and systems synchronization in
fractional variable-order discrete-time systems, particularly discrete-time neural networks
which we will concider in our future works.
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