Previous Issue
Volume 6, June

Table of Contents

Int. J. Neonatal Screen., Volume 6, Issue 3 (September 2020) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessReview
Establishing Pompe Disease Newborn Screening: The Role of Industry
Int. J. Neonatal Screen. 2020, 6(3), 55; https://doi.org/10.3390/ijns6030055 (registering DOI) - 05 Jul 2020
Abstract
When clinical trials for enzyme replacement therapy for Pompe disease commenced, a need for newborn screening (NBS) for Pompe disease was recognized. Two methods for NBS for Pompe disease by measuring acid α-glucosidase in dried blood spots on filter paper were developed in [...] Read more.
When clinical trials for enzyme replacement therapy for Pompe disease commenced, a need for newborn screening (NBS) for Pompe disease was recognized. Two methods for NBS for Pompe disease by measuring acid α-glucosidase in dried blood spots on filter paper were developed in an international collaborative research effort led by Genzyme. Both methods were used successfully in NBS pilot programs to demonstrate the feasibility of NBS for Pompe disease. Since 2009, all babies born in Taiwan have been screened for Pompe disease. Pompe disease was added to the Recommended Uniform (Newborn) Screening Panel in the United States in 2015. NBS for Pompe disease is possible because of the unprecedented and selfless collaborations of countless international experts who shared their thoughts and data freely with the common goal of establishing NBS for Pompe disease expeditiously. Full article
(This article belongs to the Special Issue Newborn Screening for Pompe Disease)
Open AccessReview
The Changing Face of Cystic Fibrosis and Its Implications for Screening
Int. J. Neonatal Screen. 2020, 6(3), 54; https://doi.org/10.3390/ijns6030054 (registering DOI) - 03 Jul 2020
Viewed by 89
Abstract
Early diagnosis, multidisciplinary care, and optimized and preventive treatments have changed the face of cystic fibrosis. Life expectancy has been expanded in the last decades. Formerly a pediatric disease, cystic fibrosis has reached adulthood. Mutation-specific treatments will expand treatment options and give hope [...] Read more.
Early diagnosis, multidisciplinary care, and optimized and preventive treatments have changed the face of cystic fibrosis. Life expectancy has been expanded in the last decades. Formerly a pediatric disease, cystic fibrosis has reached adulthood. Mutation-specific treatments will expand treatment options and give hope for further improvement of quality of life and life expectancy. Newborn screening for CF fits perfectly into these care structures and offers the possibility of preventive treatment even before symptoms occur. Especially in countries without screening, newborn screening will fulfill that promise only with increased awareness and new care structures. Full article
(This article belongs to the Special Issue Newborn Screening for Cystic Fibrosis)
Open AccessArticle
Pulse Oximetry and Congenital Heart Disease Screening: Results of the First Pilot Study in Morocco
Int. J. Neonatal Screen. 2020, 6(3), 53; https://doi.org/10.3390/ijns6030053 - 30 Jun 2020
Viewed by 197
Abstract
Congenital heart disease (CHD) is the most common congenital malformation. Diagnosis of critical congenital heart disease (CCHD), the most severe type of congenital heart disease, in a newborn may be difficult. The addition of CCHD screening, using pulse oximetry, to clinical assessment significantly [...] Read more.
Congenital heart disease (CHD) is the most common congenital malformation. Diagnosis of critical congenital heart disease (CCHD), the most severe type of congenital heart disease, in a newborn may be difficult. The addition of CCHD screening, using pulse oximetry, to clinical assessment significantly improves the rate of detection. We conducted a pilot study in Morocco on screening neonates for critical congenital heart disease. This study was conducted in the maternity ward of Mohammed VI University Hospital of Marrakesh, Morocco, and included asymptomatic newborns delivered between March 2019 and January 2020. The screening of CCHD was performed by pulse oximetry measuring the pre- and post-ductal saturation. Screening was performed on 8013/10,451 (76.7%) asymptomatic newborns. According to the algorithm, 7998 cases passed the screening test (99.82%), including one inconclusive test that was repeated an hour later and was normal. Fifteen newborns failed the screening test (0.18%): five CCHD, five false positives, and five CHD but non-critical. One false negative case was diagnosed at 2 months of age. Our results encourage us to strengthen screening for CCHD by adding pulse oximetry to the routine newborn screening panel. Full article
Open AccessArticle
Follow-Up for an Abnormal Newborn Screen for Severe Combined Immunodeficiencies (NBS SCID): A Clinical Immunology Society (CIS) Survey of Current Practices
Int. J. Neonatal Screen. 2020, 6(3), 52; https://doi.org/10.3390/ijns6030052 - 30 Jun 2020
Viewed by 165
Abstract
Severe combined immunodeficiency (SCID) includes a group of monogenic disorders presenting with severe T cell lymphopenia (TCL) and high mortality, if untreated. The newborn screen (NBS) for SCID, included in the recommended universal screening panel (RUSP), has been widely adopted across the US [...] Read more.
Severe combined immunodeficiency (SCID) includes a group of monogenic disorders presenting with severe T cell lymphopenia (TCL) and high mortality, if untreated. The newborn screen (NBS) for SCID, included in the recommended universal screening panel (RUSP), has been widely adopted across the US and in many other countries. However, there is a lack of consensus regarding follow-up testing to confirm an abnormal result. The Clinical Immunology Society (CIS) membership was surveyed for confirmatory testing practices for an abnormal NBS SCID result, which included consideration of gestational age and birth weight, as well as flow cytometry panels. Considerable variability was observed in follow-up practices for an abnormal NBS SCID with 49% confirming by flow cytometry, 39% repeating TREC analysis, and the remainder either taking prematurity into consideration for subsequent testing or proceeding directly to genetic analysis. More than 50% of respondents did not take prematurity into consideration when determining follow-up. Confirmation of abnormal NBS SCID in premature infants continues to be challenging and is handled variably across centers, with some choosing to repeat NBS SCID testing until normal or until the infant reaches an adjusted gestational age of 37 weeks. A substantial proportion of respondents included naïve and memory T cell analysis with T, B, and NK lymphocyte subset quantitation in the initial confirmatory panel. These results have the potential to influence the diagnosis and management of an infant with TCL as illustrated by the clinical cases presented herein. Our data indicate that there is clearly a strong need for harmonization of follow-up testing for an abnormal NBS SCID result. Full article
Open AccessArticle
Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses
Int. J. Neonatal Screen. 2020, 6(3), 51; https://doi.org/10.3390/ijns6030051 - 27 Jun 2020
Viewed by 175
Abstract
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March [...] Read more.
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies. Full article
(This article belongs to the Special Issue CLIR Applications for Newborn Screening)
Open AccessArticle
Referral and Lost to System Rates of Two Newborn Hearing Screening Programs in Saudi Arabia
Int. J. Neonatal Screen. 2020, 6(3), 50; https://doi.org/10.3390/ijns6030050 - 27 Jun 2020
Viewed by 220
Abstract
Congenital hearing loss has been commonly reported as a significant health problem. Lost to system (LTS) is a major challenge facing newborn hearing screening (NHS) programs. This retrospective cross-sectional descriptive study aimed to determine the referral and LTS rates after the two-stage NHS [...] Read more.
Congenital hearing loss has been commonly reported as a significant health problem. Lost to system (LTS) is a major challenge facing newborn hearing screening (NHS) programs. This retrospective cross-sectional descriptive study aimed to determine the referral and LTS rates after the two-stage NHS based on transient evoked otoacoustic emissions (TEOAEs) in two main hospitals in Riyadh, Saudi Arabia (SA). NHS was performed on newborns before hospital discharge. Newborns were only rescreened if NHS initially revealed a fail/refer outcome in one or both ears. Those who failed the first and second screenings or had risk factors were referred for auditory brainstem response (ABR) testing to confirm or exclude hearing loss. In total, 20,171 newborns (40,342 ears; 52% males; 48% females) were screened, of whom 19,498 (96.66%) passed the initial screening, while 673 (3.34%) failed. Of the 673 newborns, 235 (34.92%) were LTS, and 438 (65.08%) were rescreened, of whom 269 (61.42%) failed and were referred for a comprehensive audiological assessment to confirm the existence of hearing loss. The referral rate after the initial two-stage screening was equal to 1.33%. The lack of awareness of the importance of NHS among parents seems to be the major cause behind the LTS rate. The stakeholders have to work efficiently to reduce the LTS rate. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop