Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats
Abstract
:1. Introduction
2. MFM on Magnetic Nanowire Arrays
3. MFM on Single Magnetic Nanowires and Nanofibers
4. MFM on Magnetic Nanofiber Mats
5. MFM on Rough Surfaces—What Can Be Transferred to Nanofiber Mats
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sáenz, J.J.; García, N. Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 1987, 62, 4293. [Google Scholar] [CrossRef]
- Grütter, P.; Mamin, H.J.; Rugar, D. Magnetic force microscopy (MFM). In Scanning Tunneling Microscopy II; Wiesendanger, R., Güntherodt, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 151–207. [Google Scholar]
- Hug, H.J.; Stiefel, B.; van Schendel, P.J.A.; Moser, A.; Hofer, R.; Martin, S.; Güntherodt, H.-J. Quantitative magnetic force microscopy on perpendicularly magnetized samples. J. Appl. Phys. 1998, 83, 5609. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, M.R.; Hartmann, U. Recent advances in magnetic force microscopy. Ultramicroscopy 2003, 97, 103–112. [Google Scholar] [CrossRef]
- Kazakova, O.; Puttock, R.; Barton, C.; Corte-León, H.; Jaafar, M.; Neu, V.; Asenjo, A. Frontiers of magnetic force microscopy. J. Appl. Phys. 2019, 125, 060901. [Google Scholar] [CrossRef]
- Abelmann, L. Magnetic force microscopy. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: Oxford, UK, 2017; pp. 675–684. [Google Scholar]
- Katsuki, A.; Matsushima, M. Current-feedback magnetic multivibrator with feedback-controlled frequency compensation circuit using phase-locked loop. In Proceedings of the 25th International Telecommunications Energy Conference, Yokohama, Japan, 23 October 2003; pp. 352–357. [Google Scholar]
- Schwenk, J.; Marioni, M.; Romer, S.; Joshi, N.R.; Hug, H.J. Non-contact bimodal magnetic force microscopy. Appl. Phys. Lett. 2013, 104, 112412. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, M.; Pablo-Navarro, J.; Berganza, E.; Ares, P.; Magén, C.; Masseboeuf, A.; Gatel, C.; Snoeck, E.; Gómez-Herrero, J.; María de Teresa, J.; et al. Customized MFM probes based on magnetic nanorods. Nanoscale 2020, 18, 10090–10097. [Google Scholar] [CrossRef]
- Ares, P.; Jaafar, M.; Gil, A.; Gómez-Herero, J.; Asenjo, A. Magnetic force microscopy in liquids. Small 2015, 11, 4731–4736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehn, M.; Padovani, S.; Ounadjela, K.; Bucher, J.P. Nanoscale magnetic domain structures in epitaxial cobalt films. Phys. Rev. B 1996, 54, 3428–3433. [Google Scholar] [CrossRef]
- Pandey, M.K.; Kar, A.K. Effect of annealing temperature on the magnetic domain structure and surface mechanical properties of Ni-C composite thin films: Magnetic and lateral force microscopy, and force-distance spectroscopy. Mater. Lett. 2021, 301, 130295. [Google Scholar] [CrossRef]
- Talapatra, A.; Arout Chelvane, J.; Mohanty, J. Microscopic understanding of domain formation in Gd-Fe thin films. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1832, p. 130044. [Google Scholar]
- Hug, H.; Stiefel, B.; Moser, A.; Parashikov, I.; Klicznik, A.; Lipp, D.; Güntherodt, H.-J.; Bochi, G.; Paul, D.I.; O’Handley, R.C. Magnetic domain structure in ultrathin Cu/Ni/Cu/Si(001) films. J. Appl. Phys. 1996, 79, 5609. [Google Scholar] [CrossRef]
- Jali, J.V.; Hong, Y.-K.; Abo, G.S.; Bae, S.; Lee, J.-J.; Park, J.-H.; Choi, B.C.; Kim, S.-G. MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe12O19) single crystals. J. Magn. Magn. Mater. 2011, 323, 2627–2631. [Google Scholar] [CrossRef]
- Liou, S.H.; Sabiryanov, R.F.; Jaswal, S.S.; Wu, J.C.; Yao, Y.D. Magnetic domain patterns of rectangular and elliptic arrays of small permalloy elements. J. Magn. Magn. Mater. 2001, 226–230, 1270–1272. [Google Scholar] [CrossRef]
- Chuang, C.S.; Matsunaga, M.; Wang, T.-H.; Roy, P.; Ravindranath, R.; Ananthula, M.; Aoki, N. Investigation of plant leaf-derived graphene quantum dot clusters via magnetic force microscopy. Nanotechnology 2021, 32, 245704. [Google Scholar] [CrossRef] [PubMed]
- Salaheldeen, M.; Vega, V.; Ibabe, A.; Jaafar, M.; Asenjo, A.; Fernandez, A.; Prida, V.M. Tailoring of perpendicular magnetic anisotropy in Dy13Fe87 thin films with hexagonal antidote lattice structure. Nanomaterials 2018, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Serri, M.; Mannin, M.; Poggini, L.; Vélez-Fort, E.; Cortigiani, B.; Sainctavit, P.; Rovai, D.; Caneschi, A.; Sessoli, R. Low-temperature magnetic force microscopy on single molecule magnet-based microarrays. Nano Lett. 2017, 17, 1899–1905. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. New materials and effects in molecular nanomagnets. Appl. Sci. 2021, 11, 7510. [Google Scholar] [CrossRef]
- Frandsen, C.; Stipp, S.L.S.; McEnroe, S.A.; Madsen, M.B.; Knudsen, J.M. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Phys. Earth Planet. Inter. 2004, 141, 121–129. [Google Scholar] [CrossRef]
- Al-Khafaji, M.A.; Rainforth, W.M.; Gibbs, M.R.J.; Bishop, J.E.L.; Davies, H.A. The effect of tip type and scan height on magnetic domain images obtained by MFM. IEEE Trans. Magn. 1996, 32, 4138–4140. [Google Scholar] [CrossRef]
- Obara, G.; Sakurai, T.; Ono, O. Magnetic domain observations of ferrite sintered magnets using MFM images observed from multiple distances and image processing. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Weiss, R.; Ehrmann, A. Preliminary report on MFM measurements on magnetic nanofiber mats. Commun. Dev. Assem. Text. Prod. 2021, 2, 1–7. [Google Scholar]
- Amos, N.; Ikkawi, R.; Haddon, R.; Litvinov, D.; Khizroev, S. Controlling multidomain states to enable sub-10-nm magnetic force microscopy. Appl. Phys. Lett. 2006, 93, 203116. [Google Scholar] [CrossRef]
- Nocera, T.M.; Chen, J.; Murray, C.B.; Agarwal, G.J. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles. Nanotechnology 2012, 23, 495704. [Google Scholar] [CrossRef]
- Makarova, M.V.; Akaishi, Y.; Ikarashi, T.; Rao, K.S.; Yoshimura, S.; Saito, H. Alternating magnetic force microscopy: Effect of Si doping on the temporal performance degradation of amorphous FeCoB magnetic tips. J. Magn. Magn. Mater. 2019, 471, 209–214. [Google Scholar] [CrossRef]
- Yamaoka, T.; Watanabe, K.; Shirakawabe, Y.; Chinone, K.; Saitoh, E.; Tanaka, M.; Miyajima, H. Applications of high-resolution MFM system with low-moment probe in a vacuum. IEEE Trans. Magn. 2005, 41, 3733–3735. [Google Scholar] [CrossRef]
- Yamaoka, T.; Tsujikawa, H.; Hasumura, S.; Andou, K.; Shigeno, M.; Ito, A.; Kawamura, H. Vacuum magnetic force microscopy at high temperatures: Observation of permanent magnets. Microsc. Today 2014, 22, 12–17. [Google Scholar] [CrossRef]
- Suzuki, K.; Katamura, S.; Mooney, C.B. Observation of magnetic film using magnetic force microscope (MFM) in ultra-high vacuum (UHV). Microsc. Microanal. 2001, 7, 866–867. [Google Scholar] [CrossRef]
- Akdogan, O.; Akgodan, N.G. SmCo-based MFM probes with high switching fields. J. Magn. Magn. Mater. 2021, 520, 167124. [Google Scholar] [CrossRef]
- Thielsch, J.; Stopfel, H.; Wolff, U.; Neu, V.; Woodcock, T.G.; Güth, K.; Schult, L.; Gutfleisch, O. In situ magnetic force microscope studies of magnetization reversal of interaction domains in hot deformed Nd-Fe-B magnets. J. Appl. Phys. 2012, 111, 103901. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, R.; García-Martin, J.M.; Briones, F.; Costa-Krämer, J.L. Domain structure and reversal mechanism through diffracted magneto-optics in Fe80B20 microsquare arrays. Magnetochemistry 2020, 6, 50. [Google Scholar] [CrossRef]
- Ciuta, G.; Dumas-Bouchiat, F.; Dempsey, N.M.; Fruchart, O. Some aspects of magnetic force microscopy of hard magnetic films. IEEE Trans. Magn. 2016, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Skomski, R.; Zeng, H.; Sellmyer, D.J. Incoherent magnetization reversal in nanowires. J. Magn. Magn. Mater. 2002, 249, 175–180. [Google Scholar] [CrossRef]
- Cisternas, E.; Faúndez, J.; Vogel, E.E. Stabilization mechanisms for information stored in magnetic nanowire arrays. J. Magn. Magn. Mater. 2017, 426, 588–593. [Google Scholar] [CrossRef]
- Sun, L.; Hao, Y.; Chien, C.L.; Searson, P.C. Tuning the properties of magnetic nanowires. IBM J. Res. 2005, 49, 79–102. [Google Scholar] [CrossRef]
- Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J.Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501. [Google Scholar] [CrossRef] [Green Version]
- Li, H.J.; Wu, Q.; Yue, M.; Peng, Y.; Li, Y.P.; Liang, J.M.; Wang, D.J.; Zhang, J.X. Magnetization reversal in cobalt nanowires with combined magneto-crystalline and shape anisotropies. J. Magn. Magn. Mater. 2019, 481, 104–110. [Google Scholar] [CrossRef]
- Qin, D.-H.; Zhang, H.-L.; Xu, C.-L.; Xu, T.; Li, H.-L. Magnetic domain structure in small diameter magnetic nanowire arrays. Appl. Surf. Sci. 2005, 239, 279–284. [Google Scholar] [CrossRef]
- Qin, D.H.; Lu, M.; Li, H.L. Magnetic force microscopy of magnetic domain structure in highly ordered Co nanowire arrays. Chem. Phys. Lett. 2001, 350, 51–56. [Google Scholar] [CrossRef]
- Escrig, J.; Altbir, D.; Jaafar, M.; Navas, D.; Asenjo, A.; Vázques, M. Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure. Phys. Rev. B 2007, 75, 184429. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.F.; Pei, W.; Hasagawa, T.; Washiya, T.; Sait, H.; Ishio, S.; Oshima, H.T.; Itoh, K.-I. Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy. J. Magn. Magn. Mater. 2008, 320, 736–741. [Google Scholar] [CrossRef]
- Asenjo, A.; Jaafar, M.; Navas, D.; Vázquez, M. Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays. J. Appl. Phys. 2006, 100, 023909. [Google Scholar] [CrossRef] [Green Version]
- Nielsch, K.; Wehrspohn, R.B.; Barthel, J.; Kirschner, J.; Fischer, S.F.; Kronmüller, H.; Schweinböck, T.; Weiss, D.; Gösele, U. High density hexagonal nickel nanowire array. J. Magn. Magn. Mater. 2002, 249, 234–240. [Google Scholar] [CrossRef]
- May, A.; Hunt, M.; Van den Berg, A.; Hejazi, A.; Ladak, S. Realisation of a frustrated 3D magnetic nanowire lattice. Commun. Phys. 2019, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- May, A.; Saccone, M.; van den Berg, A.; Askey, J.; Hunt, M.; Ladak, S. Magnetic charge propagation upon a 3D artificial spin-ice. Nat. Comm. 2021, 12, 3217. [Google Scholar] [CrossRef]
- Ladak, S.; Read, D.E.; Perkins, G.K.; Cohen, L.F.; Branford, W.R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 2010, 6, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Rollani, V.; Munoz-Noval, A.; Gomez, A.; Valdes-Bango, M.J.I.; Velez, M.; Osorio, M.R.; Granados, D.; Gonzalez, E.M.; Vicent, J.L. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. Nanotechnology 2019, 30, 244003. [Google Scholar] [CrossRef]
- Gartside, J.C.; Arroo, D.M.; Burn, D.M.; Bemmer, V.L.; Moskalenko, A.; Cohen, L.F.; Branford, W.R. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 2018, 13, 53–58. [Google Scholar] [CrossRef]
- Keswani, N.; Lopes, R.J.C.; Nakajima, Y.; Singh, R.; Chauhan, N.; Som, T.; Kumar, D.S.; Pereira, A.R.; Das, P. Controlled createion and annihilation of isolated robust emergent magnetic monopole like charged vertices in square artificial spin ice. Sci. Rep. 2021, 11, 13593. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, A.; Singh, N.; Adeyeye, A.O. Magnetic tenability of permalloy artificial spin ice structures. Phys. Rev. Appl. 2020, 13, 014034. [Google Scholar] [CrossRef]
- Puttock, R.; Manzin, A.; Neu, V.; Garcia-Sanchez, F.; Fernandez Scarioni, A.; Schumacher, H.W.; Kazakova, O. Modal frustration and periodicity breaking in artificial spin ice. Small 2020, 16, 2003141. [Google Scholar] [CrossRef] [PubMed]
- Berganza, E.; Jaarar, M.; Bran, C.; Fernández-Roldán, J.A.; Chubykalo-Fesenko, O.; Vázquez, M.; Asenjo, A. Multisegmented nanowires: A step towards the control of the domain wall configuration. Sci. Rep. 2017, 7, 11576. [Google Scholar] [CrossRef] [Green Version]
- Bran, C.; Fernandez-Roldan, J.A.; Palmero, E.M.; Berganza, E.; Guzman, J.; del Real, R.P.; Asenjo, A.; Fraile Rodríguez, A.; Foerster, M.; Aballe, L.; et al. Direct observation of transverse and vortex metastable magnetic domains in cylindrical nanowires. Phys. Rev. B 2017, 96, 125415. [Google Scholar] [CrossRef] [Green Version]
- Askey, J.; Hunt, M.O.; Langbein, W.; Ladak, S. Use of two-photon lithography with a negative resist and processing to realize cylindrical magnetic nanowires. Nanomaterials 2020, 10, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasirpouri, F.; Nogaret, A.; Bending, S.J. Effect of size and configuration on the magnetization of nickel dot arrays. IEEE Trans. Magn. 2011, 47, 4695–4700. [Google Scholar] [CrossRef] [Green Version]
- Nasirpouri, F.; Peighambari-Sattari, S.-M.; Bran, C.; Palmero, E.M.; Berganza Eguiarte, E.; Vazquez, M.; Patsopoulos, A.; Kechrakos, D. Geometrically designed domain wall trap in tri-segmented nickel magnetic nanowires for spintronics devices. Sci. Rep. 2019, 9, 9010. [Google Scholar] [CrossRef]
- Corte-León, H.; Rodríguez, L.A.; Pancaldi, M.; Gatel, C.; Cox, D.; Snoeck, E.; Antonov, V.; Vavassori, P.; Kazakova, O. Magnetic imaging using geometrically constrained nano-domain walls. Nanoscale 2019, 11, 4478–4488. [Google Scholar] [CrossRef] [Green Version]
- O’Barr, R.; Lederman, M.; Schultz, S.; Xu, W.H.; Scherer, A.; Tonucci, R.J. Preparation and quantitative magnetic studies of single-domain nickel cylinders. J. Appl. Phys. 1996, 79, 5303. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.W.; Son, J.Y. Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration. J. Magn. Magn. Mater. 2017, 444, 102–105. [Google Scholar] [CrossRef]
- Ebels, U.; Radulescu, A.; Henry, Y.; Piraux, L.; Ounadjela, K. Spin accumulation and domain wall magnetoresistance in 35 nm Co wires. Phys. Rev. Lett. 2000, 84, 983–986. [Google Scholar] [CrossRef]
- Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J.-M.; Duvail, J.-L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. 2001, 20, 35–54. [Google Scholar] [CrossRef]
- Belliard, L.; Miltat, J.; Thiaville, A.; Dubois, S.; Duvail, J.L.; Piraux, L. Observing magnetic nanowires by means of magnetic force microscopy. J. Magn. Magn. Mater. 1998, 190, 1–16. [Google Scholar] [CrossRef]
- García, J.M.; Thiaville, A.; Miltat, J. MFM imaging of nanowires and elongated patterned elements. J. Magn. Magn. Mater. 2002, 249, 163–169. [Google Scholar] [CrossRef]
- Bran, C.; Fernandez-Roldan, J.A.; del Real, R.P.; Asenjo, A.; Chubykalo-Fesenko, O.; Vazquez, M. Magnetic configurations in modulated cylindrical nanowires. Nanomaterials 2021, 11, 600. [Google Scholar] [CrossRef] [PubMed]
- Bochmann, S.; Döhler, D.; Trapp, B.; Stano, M.; Fruchart, O.; Bachmann, J. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 2018, 124, 163907. [Google Scholar] [CrossRef] [Green Version]
- Bochmann, S.; Fernandez-Pacheco, A.; Mackovic, M.; Neff, A.; Siefermann, K.R.; Spiecker, E.; Cowburn, R.P.; Bachmann, J. Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of ‘bits’. RSC Adv. 2017, 7, 37627–37635. [Google Scholar] [CrossRef] [Green Version]
- De Campos Pinto Sinnecker, E.H.; García-Martin, J.M.; Altbir, D.; D’Albuquerque e Castro, J.; Sinnecker, J.P. A magnetic force microscopy study of patterned T-shaped structures. Materials 2021, 14, 1567. [Google Scholar]
- Blachowicz, T.; Ehrmann, A. Micromagnetic investigation of low-symmetry 3D particles. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 175, p. 012057. [Google Scholar]
- Jaafar, M.; Iglesias-Freire, O.; Serrano-Ramón, L.; Ibarra, M.R.; de Teresa, J.M.; Asenjo, A. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination. Beilstein J. Nanotechnol. 2011, 2, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Zagorskii, D.L.; Doludenko, I.M.; Cherkasov, D.A.; Zhigalina, O.M.; Khmelenin, D.N.; Ivanov, I.M.; Bukharaev, A.A.; Bizyaev, D.A.; Khaibullin, R.I.; Shatalov, S.A. Template synthesis, structure, and magnetic properties of layered nanowires. Phys. Solid State 2019, 61, 1634–1645. [Google Scholar] [CrossRef]
- Kodaira, R.; Horiguchi, R.; Hara, S.J. Magnetization characterization of MnAs nanoclusters at close range in bended MnAs/InAs heterojunction nanowires. J. Crystal Growth 2019, 507, 241–245. [Google Scholar] [CrossRef]
- Dai, G.L.; Hu, X.K.; Sievers, S.; Scarloni, A.F.; Neu, V.; Fluegge, J.; Schumacher, H.W. Metrological large range magnetic force microscopy. Rev. Sci. Instr. 2018, 89, 093703. [Google Scholar] [CrossRef]
- Choopani, S.; Samavat, F.; Kolobova, E.N.; Grishin, A.M. Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers. Ceram. Int. 2020, 46, 2072–2078. [Google Scholar] [CrossRef]
- Cherkasov, D.A.; Panov, D.V.; Doludenko, I.M.; Kanevskiy, V.M.; Muslimov, A.E.; Zagorskiy, D.L.; Biziaev, D.A.; Bukharaev, A.A. Microscopy investigation of conical and layered nanowires. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 699, p. 012005. [Google Scholar]
- Arias, M.; Pantojas, V.M.; Perales, O.; Otano, W. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers. J. Magn. Magn. Mater. 2011, 323, 2109–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashanthi, K.; Thundat, T. In situ study of electrical field-induced magnetization in multiferroic BiFeO3 nanowires. J. Scanning Microsc. 2014, 36, 224–230. [Google Scholar] [CrossRef]
- Prashanthi, K.; Shaibani, P.M.; Sohrabi, A.; Natarajan, T.S.; Thundat, T. Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Stat. Sol. RRL 2012, 6, 244–246. [Google Scholar] [CrossRef]
- Baranowska-Korczyc, A.; Reszka, A.; Sobczak, K.; Sikora, B.; Dziawa, P.; Aleszkiewicz, M.; Klopotowski, L.; Paszkowicz, W.; Dluzewski, P.; Kowalski, B.J.; et al. Magnetic Fe doped ZnO nanofibers obtained by electrospinning. J. Sol.-Gel Sci. Technol. 2012, 61, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Pullar, R.C.; Bdikin, I.K.; Bhattacharya, A.K. Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J. Eur. Ceram. Soc. 2012, 32, 905–913. [Google Scholar] [CrossRef]
- Zheng, J.; Du, K.; Xiao, D.; Zhou, Z.-Y.; Wei, W.-G.; Chen, J.-J.; Yin, L.-F.; Shen, J. Synthesis of ordered ultra-long manganite nanowires via electrospinning method. Chin. Phys. Lett. 2016, 33, 097501. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Popov, M.; Zhang, R.; Sharma, K.; Janes, C.; Mukundan, A.; Srinivasan, G. Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Appl. Phys. Lett. 2014, 104, 052910. [Google Scholar] [CrossRef]
- Liu, N.N.; Du, P.C.; Zhou, P.; Tanguturi, R.G.; Qi, Y.J.; Zhang, T.J. Magnetoelectric coupling in CoFe2O4-Pb(Zr0.2Ti0.8)O3 coaxial nanofibers. J. Am. Ceram. Soc. 2021, 104, 948–954. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Zhang, J.T.; Zhang, R.; Popov, M.; Petrov, V.; Srinivasan, G. Multiferroic core-shell nanofibers, assembly in a magnetic field, and studies on magneto-electric interaction. Materials 2018, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.D.; Hemalatha, J. Multifunctional films of poly(vinylidene fluoride)/ZnFe2O4 nanofibers for nanogenerator applications. J. Alloys Compd. 2021, 854, 157189. [Google Scholar] [CrossRef]
- Saito, H.; Ikeya, H.; Egawa, G.; Ishio, S.; Yoshimura, S. Magnetic force microscopy of alternating magnetic field gradient by frequency modulation of tip oscillation. J. Appl. Phys. 2009, 105, 07D524. [Google Scholar] [CrossRef]
- Saito, H.; Ito, R.; Egawa, G.; Li, Z.; Yoshimura, S. Direction detectable static magnetic field imaging by frequency-modulated magnetic force microscopy with an AC magnetic field driven soft magnetic tip. J. Appl. Phys. 2011, 109, 07E330. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Zhao, Y.; Kumar, P.; Yoshimura, S.; Saito, H. Magnetic domain imaging of a very rough fractured surface of Sr ferrite magnet without topographic crosstalk by alternating magnetic force microscopy with a sensitive FeCo-GdOx superparamagnetic tip. J. Appl. Phys. 2018, 123, 224503. [Google Scholar] [CrossRef]
- Fewell, M.P.; Mitchell, D.R.G.; Priest, J.M.; Short, K.T.; Collins, G.A. The nature of expanded austenite. Surf. Coat. Technol. 2000, 131, 300–306. [Google Scholar] [CrossRef]
- Öztürk, O.; Okur, S.; Riviere, J.P. Structural and magnetic characterization of plasma ion nitrided layer on 316L stainless steel alloy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.S.; Sikora, A.; Pawar, S.T.; Maldar, N.N.; Deshmukh, P.P. Cobalt sulfide thin films: Chemical growth, reaction kinetics and microstructural analysis. J. Alloys Compd. 2015, 623, 466–472. [Google Scholar] [CrossRef]
- Jena, A.K.; Arout Chelvane, J.; Mohanty, J. Simultaneous improvement of piezoelectric and magnetic properties in diamagnetic ion modified BiFeO3 film. J. Alloys Compd. 2019, 805, 1168–1174. [Google Scholar] [CrossRef]
- Sharma, A.; Tripathi, S.; Ugochukwu, K.C.; Tripathi, J. Magnetic and structural properties of Ni nanocaps deposited onto self assembled nanosphere array. Thin Solid Films 2013, 536, 249–255. [Google Scholar] [CrossRef]
- Nenadovic, M.; Strbac, S.; Rakocevic, Z. Quantification of the lift height for magnetic force microscopy using 3D surface parameters. Appl. Surf. Sci. 2010, 256, 1652–1656. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrmann, A.; Blachowicz, T. Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. Magnetochemistry 2021, 7, 143. https://doi.org/10.3390/magnetochemistry7110143
Ehrmann A, Blachowicz T. Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. Magnetochemistry. 2021; 7(11):143. https://doi.org/10.3390/magnetochemistry7110143
Chicago/Turabian StyleEhrmann, Andrea, and Tomasz Blachowicz. 2021. "Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats" Magnetochemistry 7, no. 11: 143. https://doi.org/10.3390/magnetochemistry7110143
APA StyleEhrmann, A., & Blachowicz, T. (2021). Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. Magnetochemistry, 7(11), 143. https://doi.org/10.3390/magnetochemistry7110143