Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Physicochemical Characteristics
2.2. Substrate and Inoculum
2.3. Experimental Setups
2.4. Hydrodynamic Analysis
2.5. Microbiological Analysis
3. Results and Discussion
3.1. Fermentation Reactor (FR)
3.2. Methane Reactor
3.3. Hydrodynamics in the Methane Reactor
3.4. Microorganisms in the Methane Reactor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Dinh, P.V.; Takeshi, F.; Minh, G.H.; Phu, S.T.P. Comparison Between Single and Two-Stage Anaerobic Digestion of Vegetable Waste: Kinetics of Methanogenesis and Carbon Flow. Waste Biomass Valorization 2020, 11, 6095–6103. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Tho, B.L.; Toan, P.P.S.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2019, 25, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Van Lier, J.B.; Mahmoud, N.; Zeeman, G. Anaerobic wastewater treatment. In Biological Wastewater Treatment: Principles, Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; pp. 415–456. [Google Scholar]
- Nasr, N.; Elbeshbishy, E.; Hafez, H.; Nakhla, G.; El Naggar, M.H. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour. Technol. 2012, 111, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Dinh, P.; Fujiwara, T.; Giang, H.; Phu, S.P. The fate of carbon in two-stage anaerobic digestion of vegetable waste. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ho Chi Minh City, Vietnam, 25–28 February 2019; p. 012019. [Google Scholar] [CrossRef] [Green Version]
- The-Eco-Ambassaor. Solid Anaerobic Digestion Technology. Available online: https://www.theecoambassador.com/SolidAnaerobicDigestion.html (accessed on 17 May 2023).
- Eisenmann. Anaerobic Digestion Technology. Available online: https://cdn2.hubspot.net/hub/133998/file-608889867-pdf/docs/eisenmann_biogas_brochure.pdf (accessed on 17 May 2023).
- Burton, F.L.; Stensel, H.D.; Tchobanoglous, G. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; Wiley-Interscience: Hoboken, NJ, USA, 2003; p. 188. [Google Scholar]
- Pol, L.H.; de Castro Lopes, S.; Lettinga, G.; Lens, P. Anaerobic sludge granulation. Water Res. 2004, 38, 1376–1389. [Google Scholar] [CrossRef]
- Quiroz Arita, C.E. Anaerobic Digestion Comparison of Manure Leachate by High-Rate Anaerobic Reactors; Colorado State University: Fort Collins, CO, USA, 2013. [Google Scholar]
- Abbasi, T.; Tauseef, S.; Abbasi, S.A. Biogas Energy; Springer Science & Business Media: New York, NY, USA, 2011; Volume 2, p. 184. [Google Scholar]
- Boonsawang, P.; Rerngnarong, A.; Tongurai, C.; Chaiprapat, S. Effect of pH, OLR, and HRT on performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater. Desalin. Water Treat. 2015, 54, 3317–3327. [Google Scholar] [CrossRef]
- Dinh, P.V.; Takeshi, F.; Minh, G.H.; Phu, S.T.P. A new kinetic model for biogas production from co-digestion by batch mode. Glob. J. Environ. Sci. Manag. 2018, 4, 251–262. [Google Scholar] [CrossRef]
- D’Bastiani, C.; Alba, J.L.; Mazzarotto, G.T.; de Farias Neto, S.R.; Reynolds, A.; Kennedy, D.; Beal, L.L. Three-phase hydrodynamic simulation and experimental validation of an upflow anaerobic sludge blanket reactor. Comput. Math. Appl. 2021, 83, 95–110. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Tsuruta, T.; Nishino, N. Examination of milk microbiota, fecal microbiota, and blood metabolites of Jersey cows in cool and hot seasons. Anim. Sci. J. 2020, 91, e13441. [Google Scholar] [CrossRef]
- Sanders, W.T.M. Anaerobic Hydrolysis during Digestion of Complex Substrates; Wageningen University: Wageningen, The Netherlands, 2001. [Google Scholar]
- Zhang, B.; Zhang, L.; Zhang, S.; Shi, H.; Cai, W. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 2005, 26, 329–340. [Google Scholar] [CrossRef]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Carrère, H.; Malpei, F. A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl. Energy 2013, 104, 62–70. [Google Scholar] [CrossRef]
- Sans, C.; Mata-Alvarez, J.; Cecchi, F.; Pavan, P.; Bassetti, A. Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour. Technol. 1995, 51, 89–96. [Google Scholar] [CrossRef]
- Bolzonella, D.; Fatone, F.; Pavan, P.; Cecchi, F. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 2005, 44, 3412–3418. [Google Scholar] [CrossRef]
- Cavinato, C.; Bolzonella, D.; Fatone, F.; Cecchi, F.; Pavan, P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 2011, 102, 8605–8611. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef]
- Yu, H.G.; Fang, H.H.P. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 2002, 45, 201–206. [Google Scholar] [CrossRef]
- Babel, S.; Fukushi, K.; Sitanrassamee, B. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester. Water Res. 2004, 38, 2417–2423. [Google Scholar] [CrossRef]
- Grzelak, J.; Ślęzak, R.; Krzystek, L.; Ledakowicz, S. Effect of pH on the production of volatile fatty acids in dark fermentation process of organic waste. Ecol. Chem. Eng. 2018, 25, 295. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Cheah, Y.-K.; Vidal-Antich, C.; Dosta, J.; Mata-Álvarez, J. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ. Sci. Pollut. Res. 2019, 26, 35509–35522. [Google Scholar] [CrossRef] [Green Version]
- Traverso, P.; Pavan, P.; Bolzonella, D.; Innocenti, L.; Cecchi, F.; Mata-Alvarez, J. Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 2000, 11, 407–414. [Google Scholar] [CrossRef]
- McHugh, S.; O’reilly, C.; Mahony, T.; Colleran, E.; O’flaherty, V. Anaerobic granular sludge bioreactor technology. Rev. Environ. Sci. Biotechnol. 2003, 2, 225–245. [Google Scholar] [CrossRef]
- Boyle-Gotla, A. Membrane fouling in industrial anaerobic membrane bioreactors. Ph.D. Thesis, The University of Queensland, St Lucia, Australia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 2016, 216, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Peng, Y.; Ni, B.-J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Fact. 2015, 14, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Cheng, H.; Wyckoff, K.N.; He, Q. Linkages of Firmicutes and Bacteroidetes populations to methanogenic process performance. J. Ind. Microbiol. Biotechnol. 2016, 43, 771–781. [Google Scholar] [CrossRef]
- Shin, J.; Cho, S.-K.; Lee, J.; Hwang, K.; Chung, J.W.; Jang, H.-N.; Shin, S.G. Performance and microbial community dynamics in anaerobic digestion of waste activated sludge: Impact of immigration. Energies 2019, 12, 573. [Google Scholar] [CrossRef] [Green Version]
- Díaz, A.I.; Oulego, P.; Collado, S.; Laca, A.; González, J.M.; Díaz, M. Impact of anaerobic digestion and centrifugation/decanting processes in bacterial communities fractions. J. Biosci. Bioeng. 2018, 126, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Chen, Y.; Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 2021, 135, 110212. [Google Scholar] [CrossRef]
- Fernandes, J.; Su, W.; Rahat-Rozenbloom, S.; Wolever, T.; Comelli, E. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 2014, 4, e121. [Google Scholar] [CrossRef] [Green Version]
- Ariesyady, H.D.; Ito, T.; Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007, 41, 1554–1568. [Google Scholar] [CrossRef]
- Jumas-Bilak, E.; Marchandin, H. The Phylum Synergistetes. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 1st ed.; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 931–954. [Google Scholar]
- Castro-Fernandez, V.; Zamora, R.; Herrera-Morande, A.; Vallejos, G.; Gonzalez-Ordenes, F.; Guixé, V. Evolution, metabolism and molecular mechanisms underlying extreme adaptation of Euryarchaeota and its biotechnological potential. In Archaea-New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications; Sghaier, H., Najjari, A., Ghedira, K., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
Characteristics | BMSW | Horse Dung | Feedstock |
---|---|---|---|
TS (%) | 27.4 | 24.5 | 27.1 |
VS (%TS) | 66.7 | 76.9 | 67.6 |
C (%TS) | 45.2 | 44.3 | 45.1 |
N (%TS) | 2.77 | 1.16 | 2.63 |
C/N | 16.3 | 36.2 | 17.2 |
No. | FR | Dilution Rate | MR | No. | FR | Dilution Rate | MR |
---|---|---|---|---|---|---|---|
pH | n | HRT Days | pH | n | HRT Days | ||
T1 | 6.5 | 3:01 | 15.8 | T9 | 6.5 | 3:01 | 4.0 |
T2 | 6.0 | 3:01 | 15.8 | T10 | 5.0 | 1:01 | 7.9 |
T3 | 5.5 | 3:01 | 15.8 | T11 | 6.0 | 1:01 | 7.9 |
T4 | 5.0 | 3:01 | 15.8 | T12 | 4.5 | 2:01 | 5.3 |
T5 | 4.5 | 3:01 | 15.8 | T13 | 5.5 | 2:01 | 5.3 |
T6 | 4.5 | 3:01 | 7.9 | T14 | 6.5 | 2:01 | 5.3 |
T7 | 5.5 | 3:01 | 7.9 | T15 | 6.5 | 2:01 | 3.5 |
T8 | 6.5 | 3:01 | 7.9 | T16 | 5.5 | 2:01 | 3.5 |
Model | Biogas Yield | Methane Concentration | ||||
---|---|---|---|---|---|---|
Coefficients | Estimate | T Value | Pr (>ltl) | Estimate | T Value | Pr (>ltl) |
Intercept | 173.4557 | 5.058 | *** | 49.3485 | 11.522 | *** |
OLR2 | −3.5113 | −5.023 | *** | −0.5088 | −5.829 | *** |
OLR·pH | 7.4108 | 5.391 | *** | 1.0351 | 6.029 | *** |
CODin = (OLR/HRT) | −2.4588 | −3.326 | ** | −0.2396 | −2.595 | * |
HRT | 9.5350 | 5.050 | *** | 1.1608 | 4.923 | *** |
General information | Multiple R2: 0.8389; Adjusted R2: 0.7803; p-value: 0.0002445 | Multiple R2: 0.8368; Adjusted R2: 0.7775; p-value: 0.0002619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, P.V.; Fujiwara, T. Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste. Fermentation 2023, 9, 720. https://doi.org/10.3390/fermentation9080720
Dinh PV, Fujiwara T. Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste. Fermentation. 2023; 9(8):720. https://doi.org/10.3390/fermentation9080720
Chicago/Turabian StyleDinh, Pham Van, and Takeshi Fujiwara. 2023. "Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste" Fermentation 9, no. 8: 720. https://doi.org/10.3390/fermentation9080720
APA StyleDinh, P. V., & Fujiwara, T. (2023). Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste. Fermentation, 9(8), 720. https://doi.org/10.3390/fermentation9080720