Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges
Abstract
:1. Introduction
2. Saccharomyces cerevisiae: An Efficient Cell Factory
2.1. Finite Biosafety Concerns
2.2. Applicable Evolutionary Position
2.3. Undemanding Cultivation Conditions
2.4. Strong Environmental Stress Tolerance
2.5. Ease of Manipulation
3. Synthesis of Bioethanol in Saccharomyces cerevisiae
3.1. The Addition of External Stimulants to the Medium
3.2. Optimization of S. cerevisiae Culture Components and Systems
3.3. Breeding of High-Tolerance Strains
3.4. Precise Modification of the S. cerevisiae Genome
4. The Bottleneck of Producing Bioethanol by Saccharomyces cerevisiae
4.1. The Utilization Dilemma of Fermentation Raw Materials
4.2. Limitations of Gene Editing Techniques in Saccharomyces cerevisiae
4.3. Factors of Yield Constraint
5. Future Perspectives
5.1. Redesign of Fermentation Culture System
5.2. Targeted Regulation of Fermentation Pretreatment Process
5.3. In-Depth Exploration of Important Regulatory Factors
5.4. Construction of Cell-Free Synthetic Biological System Based on Saccharomyces cerevisiae Cell Extracts
5.5. Exploration of Quorum Sensing in Bioethanol Fermentation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solomon, C.G.; Salas, R.N.; Malina, D.; Sacks, C.A.; Hardin, C.C.; Prewitt, E.; Lee, T.H.; Rubin, E.J. Fossil-Fuel Pollution and Climate Change—A New NEJM Group Series. N. Engl. J. Med. 2022, 386, 2328–2329. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D. Fossil Fuel Combustion and PM2.5 Mass Air Pollution Associations with Mortality. Environ. Int. 2022, 160, 107066. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, N.; Parameswaran, S.; Johnson, T.S. Biofuels and Sustainability. Methods Mol. Biol. 2021, 2290, 317–342. [Google Scholar]
- Abid, N.; Ceci, F.; Ikram, M. Green Growth and Sustainable Development: Dynamic Linkage between Technological Innovation, ISO 14001, and Environmental Challenges. Environ. Sci. Pollut. Res. Int. 2022, 29, 25428–25447. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Makarava, I.; Kraslawski, A.; Repo, E. Global Environmental Cost of Using Rare Earth Elements in Green Energy Technologies. Sci. Total Environ. 2022, 832, 155022. [Google Scholar] [CrossRef]
- Liu, Y.; Cruz-Morales, P.; Zargar, A.; Belcher, M.S.; Pang, B.; Englund, E.; Dan, Q.; Yin, K.; Keasling, J.D. Biofuels for A Sustainable Future. Cell 2021, 184, 1636–1647. [Google Scholar] [CrossRef]
- Hasan, M.; Abedin, M.Z.; Amin, M.B.; Nekmahmud, M.; Oláh, J. Sustainable Biofuel Economy: A Mapping through Bibliometric Research. J. Environ. Manag. 2023, 336, 117644. [Google Scholar] [CrossRef]
- Sharma, S.; Kundu, A.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Sustainable Environmental Management and Related Biofuel Technologies. J. Environ. Manag. 2020, 273, 111096. [Google Scholar] [CrossRef]
- Bhattarai, K.; Stalick, W.M.; McKay, S.; Geme, G.; Bhattarai, N. Biofuel: An Alternative to Fossil Fuel for Alleviating World Energy and Economic Crises. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2011, 46, 1424–1442. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.W.; Anderson, W.A.; Moo-Young, M. Ethanol Fermentation Technologies from Sugar and Starch Feedstocks. Biotechnol. Adv. 2008, 26, 89–105. [Google Scholar] [CrossRef]
- Gray, K.A.; Zhao, L.; Emptage, M. Bioethanol. Curr. Opin. Chem. Biol. 2006, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singhania, R.R.; Soam, S.; Chen, C.W.; Haldar, D.; Varjani, S.; Chang, J.S.; Dong, C.D.; Patel, A.K. Production of Bioethanol from Food Waste: Status and Perspectives. Bioresour. Technol. 2022, 360, 127651. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Liu, X. On the Future Fermentation. Microb. Biotechnol. 2021, 14, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Valle-Rodríguez, J.O.; Siewers, V.; Nielsen, J. Prospects for Microbial Biodiesel Production. Biotechnol. J. 2011, 6, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.K.; Nielsen, J. Metabolic Engineering of Saccharomyces cerevisiae: A Key Cell Factory Platform for Future Biorefineries. Cell. Mol. Life Sci. 2012, 69, 2671–2690. [Google Scholar] [CrossRef]
- Buijs, N.A.; Siewers, V.; Nielsen, J. Advanced Biofuel Production by the Yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 2013, 17, 480–488. [Google Scholar] [CrossRef]
- Landry, C.R.; Townsend, J.P.; Hartl, D.L.; Cavalieri, D. Ecological and Evolutionary Genomics of Saccharomyces cerevisiae. Mol. Ecol. 2006, 15, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Legras, J.L.; Galeote, V.; Bigey, F.; Camarasa, C.; Marsit, S.; Nidelet, T.; Sanchez, I.; Couloux, A.; Guy, J.; Franco-Duarte, R.; et al. Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol. Biol. Evol. 2018, 35, 1712–1727. [Google Scholar] [CrossRef] [Green Version]
- Arranz-Otaegui, A.; Gonzalez Carretero, L.; Ramsey, M.N.; Fuller, D.Q.; Richter, T. Archaeobotanical Evidence Reveals the Origins of Bread 14,400 Years Ago in Northeastern Jordan. Proc. Natl. Acad. Sci. USA 2018, 115, 7925–7930. [Google Scholar] [CrossRef] [Green Version]
- Ting, T.Y.; Li, Y.; Bunawan, H.; Ramzi, A.B.; Goh, H.H. Current Advancements in Systems and Synthetic Biology Studies of Saccharomyces cerevisiae. J. Biosci. Bioeng. 2023, 135, 259–265. [Google Scholar] [CrossRef]
- Eldarov, M.A.; Kishkovskaia, S.A.; Tanaschuk, T.N.; Mardanov, A.V. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains. Biochemistry 2016, 81, 1650–1668. [Google Scholar] [CrossRef] [PubMed]
- Belda, I.; Ruiz, J.; Santos, A.; Van Wyk, N.; Pretorius, I.S. Saccharomyces cerevisiae. Trends Genet. 2019, 35, 956–957. [Google Scholar] [CrossRef]
- Chen, Y.; Li, F.; Nielsen, J. Genome-Scale Modeling of Yeast Metabolism: Retrospectives and Perspectives. FEMS Yeast Res. 2022, 22, foac003. [Google Scholar] [CrossRef]
- Wang, G.; Huang, M.; Nielsen, J. Exploring the Potential of Saccharomyces cerevisiae for Biopharmaceutical Protein Production. Curr. Opin. Biotechnol. 2017, 48, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Patra, P.; Das, M.; Kundu, P.; Ghosh, A. Recent Advances in Systems and Synthetic Biology Approaches for Developing Novel Cell-Factories in Non-Conventional Yeasts. Biotechnol. Adv. 2021, 47, 107695. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019, 14, e1800421. [Google Scholar] [CrossRef] [Green Version]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Xu, X.; Liang, L.; Wang, X.; Bai, X.; Zhu, L.; He, Q.; Liang, H.; Xin, X.; Wang, L.; et al. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front. Immunol. 2021, 12, 777665. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as A Probiotic Feed Additive to Non and Pseudo-ruminant Feeding: A Review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Sabbatini, S.; Monari, C.; Ballet, N.; Mosci, P.; Decherf, A.C.; Pélerin, F.; Perito, S.; Scarpelli, P.; Vecchiarelli, A. Saccharomyces cerevisiae-Based Probiotic As Novel Anti-Microbial Agent for Therapy of Bacterial Vaginosis. Virulence 2018, 9, 954–966. [Google Scholar] [CrossRef] [Green Version]
- Kil, B.J.; Pyung, Y.J.; Park, H.; Kang, J.W.; Yun, C.H.; Huh, C.S. Probiotic Potential of Saccharomyces cerevisiae GILA with Alleviating Intestinal Inflammation in A Dextran Sulfate Sodium Induced Colitis Mouse Model. Sci. Rep. 2023, 13, 6687. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.R.; Klein, M.N.; Ferraz, L.P.; da Silva, A.C.; Kupper, K.C. Saccharomyces cerevisiae: A Novel and Efficient Biological Control Agent for Colletotrichum acutatum during Pre-Harvest. Microbiol. Res. 2015, 175, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Vanderwaeren, L.; Dok, R.; Voordeckers, K.; Nuyts, S.; Verstrepen, K.J. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int. J. Mol. Sci. 2022, 23, 11665. [Google Scholar] [CrossRef]
- Bu, X.; Lin, J.Y.; Duan, C.Q.; Koffas, M.A.G.; Yan, G.L. Dual Regulation of Lipid Droplet-Triacylglycerol Metabolism and ERG9 Expression for Improved β-carotene Production in Saccharomyces cerevisiae. Microb. Cell Fact. 2022, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, Q.; Selvaraj, J.N.; Zhou, Y.; Ma, L.; Zhang, G.; Ma, Y. High Copy and Stable Expression of the Xylanase XynHB in Saccharomyces cerevisiae by rDNA-Mediated Integration. Sci. Rep. 2017, 7, 8747. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Cao, M.; Jin, Y.; Yang, X.; Tian, S. Development and Application of Saccharomyces cerevisiae Cell-Surface Display for Bioethanol Production. Sheng Wu Gong Cheng Xue Bao 2012, 28, 901–911. [Google Scholar]
- Hanscho, M.; Ruckerbauer, D.E.; Chauhan, N.; Hofbauer, H.F.; Krahulec, S.; Nidetzky, B.; Kohlwein, S.D.; Zanghellini, J.; Natter, K. Nutritional Requirements of the BY Series of Saccharomyces cerevisiae Strains for Optimum Growth. FEMS Yeast Res. 2012, 12, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Dymond, J.S. Saccharomyces cerevisiae Growth Media. Methods Enzymol. 2013, 533, 191–204. [Google Scholar]
- Vallejo, B.; Matallana, E.; Aranda, A. Saccharomyces cerevisiae Nutrient Signaling Pathways Show An Unexpected Early Activation Pattern during Winemaking. Microb. Cell Factories 2020, 19, 124. [Google Scholar] [CrossRef]
- Heitmann, M.; Zannini, E.; Arendt, E. Impact of Saccharomyces cerevisiae Metabolites Produced during Fermentation on Bread Quality Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1152–1164. [Google Scholar] [CrossRef]
- Rohde, J.R.; Bastidas, R.; Puria, R.; Cardenas, M.E. Nutritional Control via Tor Signaling in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 2008, 11, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Abe, F.; Horikoshi, K. Tryptophan Permease Gene TAT2 Confers High-Pressure Growth in Saccharomyces cerevisiae. Mol. Cell Biol. 2000, 20, 8093–8102. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Mira, N.P.; Sá-Correia, I. A Genome-Wide Perspective on the Response and Tolerance to Food-Relevant Stresses in Saccharomyces cerevisiae. Curr. Opin. Biotechnol. 2011, 22, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Bravim, F.; Lippman, S.I.; da Silva, L.F.; Souza, D.T.; Fernandes, A.A.; Masuda, C.A.; Broach, J.R.; Fernandes, P.M. High Hydrostatic Pressure Activates Gene Expression that Leads to Ethanol Production Enhancement in A Saccharomyces cerevisiae Distillery Strain. Appl. Microbiol. Biotechnol. 2013, 97, 2093–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H. Molecular Mechanisms and Highly Functional Development for Stress Tolerance of the Yeast Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2021, 85, 1017–1037. [Google Scholar] [CrossRef]
- Sasano, Y.; Haitani, Y.; Hashida, K.; Oshiro, S.; Shima, J.; Takagi, H. Improvement of Fermentation Ability under Baking-Associated Stress Conditions by Altering the POG1 Gene Expression in Baker’s Yeast. Int. J. Food Microbiol. 2013, 165, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Delling, U.; Raymond, M.; Schurr, E. Identification of Saccharomyces cerevisiae Genes Conferring Resistance to Quinoline Ring-Containing Antimalarial Drugs. Antimicrob. Agents Chemother. 1998, 42, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Xu, N.; Li, Z.; Wang, J.; Meng, X.; Gao, C.; Chen, J.; Chen, W.; Chen, X.; Liu, L. Mediator Engineering of Saccharomyces cerevisiae to Improve Multidimensional Stress Tolerance. Appl. Environ. Microbiol. 2022, 88, e0162721. [Google Scholar] [CrossRef]
- Kuroda, K.; Ueda, M. Engineering of Global Regulators and Cell Surface Properties toward Enhancing Stress Tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2017, 124, 599–605. [Google Scholar] [CrossRef]
- Doğan, A.; Demirci, S.; Aytekin, A.Ö.; Şahin, F. Improvements of Tolerance to Stress Conditions by Genetic Engineering in Saccharomyces cerevisiae during Ethanol Production. Appl. Biochem. Biotechnol. 2014, 174, 28–42. [Google Scholar] [CrossRef]
- Suzuki, T.; Sakamoto, T.; Sugiyama, M.; Ishida, N.; Kambe, H.; Obata, S.; Kaneko, Y.; Takahashi, H.; Harashima, S. Disruption of Multiple Genes Whose Deletion Causes Lactic-Acid Resistance Improves Lactic-Acid Resistance and Productivity in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2013, 115, 467–474. [Google Scholar] [CrossRef]
- Okada, S.; Doi, G.; Nakagawa, S.; Kusumoto, E.; Ito, T. Simple-to-Use CRISPR-SpCas9/SaCas9/AsCas12a Vector Series for Genome Editing in Saccharomyces cerevisiae. G3 2021, 11, jkab304. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, K.; Sherlock, G. High-Throughput Yeast Strain Sequencing. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef]
- Engel, S.R.; Weng, S.; Binkley, G.; Paskov, K.; Song, G.; Cherry, J.M. From One to Many: Expanding the Saccharomyces cerevisiae Reference Genome Panel. Database 2016, 2016, baw020. [Google Scholar] [CrossRef] [Green Version]
- Peter, J.; De Chiara, M.; Friedrich, A.; Yue, J.X.; Pflieger, D.; Bergström, A.; Sigwalt, A.; Barre, B.; Freel, K.; Llored, A.; et al. Genome Evolution across 1,011 Saccharomyces cerevisiae Isolates. Nature 2018, 556, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, J.T.; Soares, P.O.; Baptista, S.L.; Costa, C.E.; Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: A review and perspectives on bioethanol production. Bioengineered 2020, 11, 883–903. [Google Scholar] [CrossRef]
- Eliodório, K.P.; Cunha, G.C.G.E.; Müller, C.; Lucaroni, A.C.; Giudici, R.; Walker, G.M.; Alves, S.L., Jr.; Basso, T.O. Advances in Yeast Alcoholic Fermentations for the Production of Bioethanol, Beer and Wine. Adv. Appl. Microbiol. 2019, 109, 61–119. [Google Scholar]
- Möllers, K.B.; Cannella, D.; Jørgensen, H.; Frigaard, N.U. Cyanobacterial Biomass as Carbohydrate and Nutrient Feedstock for Bioethanol Production by Yeast Fermentation. Biotechnol. Biofuels 2014, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of A Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Koppolu, V.; Vasigala, V.K. Role of Escherichia coli in Biofuel Production. Microbiol. Insights 2016, 9, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Tabata, T.; Yoshiba, Y.; Takashina, T.; Hieda, K.; Shimizu, N. Bioethanol Production from Steam-Exploded Rice Husk by Recombinant Escherichia coli KO11. World J. Microbiol. Biotechnol. 2017, 33, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lu, X.; Li, Y.; Jiang, X.; Liu, L.; Wang, H. New Technologies Provide More Metabolic Engineering Strategies for Bioethanol Production in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 2019, 103, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Szambelan, K.; Szwengiel, A.; Nowak, J.; Frankowski, J.; Jeleń, H. Bioethanol Production from Sorghum Grain with Zymomonas mobilis: Increasing the Yield and Quality of Raw Distillates. J. Sci. Food Agric. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Maleki, F.; Changizian, M.; Zolfaghari, N.; Rajaei, S.; Noghabi, K.A.; Zahiri, H.S. Consolidated Bioprocessing for Bioethanol Production by Metabolically Engineered Bacillus subtilis strains. Sci. Rep. 2021, 11, 13731. [Google Scholar] [CrossRef]
- Rajabi, M.; Nourisanami, F.; Ghadikolaei, K.K.; Changizian, M.; Noghabi, K.A.; Zahiri, H.S. Metagenomic Psychrohalophilic Xylanase from Camel Rumen Investigated for Bioethanol Production from Wheat Bran using Bacillus subtilis AP. Sci. Rep. 2022, 12, 8152. [Google Scholar] [CrossRef] [PubMed]
- Jacobus, A.P.; Gross, J.; Evans, J.H.; Ceccato-Antonini, S.R.; Gombert, A.K. Saccharomyces cerevisiae Strains Used Industrially for Bioethanol Production. Essays Biochem. 2021, 65, 147–161. [Google Scholar] [PubMed]
- Favaro, L.; Jansen, T.; van Zyl, W.H. Exploring Industrial and Natural Saccharomyces cerevisiae Strains for the Bio-Based Economy from Biomass: The Case of Bioethanol. Crit. Rev. Biotechnol. 2019, 39, 800–816. [Google Scholar] [CrossRef]
- Lane, S.; Dong, J.; Jin, Y.S. Value-Added Biotransformation of Cellulosic Sugars by Engineered Saccharomyces cerevisiae. Bioresour. Technol. 2018, 260, 380–394. [Google Scholar] [CrossRef]
- Li, X.; Cen, N.; Liu, L.; Chen, Y.; Yang, X.; Yu, K.; Guo, J.; Liao, X.; Shi, B. Collagen Peptide Provides Saccharomyces cerevisiae with Robust Stress Tolerance for Enhanced Bioethanol Production. ACS Appl. Mater. Interfaces 2020, 12, 53879–53890. [Google Scholar] [CrossRef]
- van Dijk, M.; Mierke, F.; Nygård, Y.; Olsson, L. Nutrient-Supplemented Propagation of Saccharomyces cerevisiae Improves Its Lignocellulose Fermentation Ability. AMB Express 2020, 10, 157. [Google Scholar] [CrossRef]
- Pereira, F.B.; Guimarães, P.M.; Teixeira, J.A.; Domingues, L. Optimization of Low-Cost Medium for very High Gravity Ethanol Fermentations by Saccharomyces cerevisiae Using Statistical Experimental Designs. Bioresour. Technol. 2010, 101, 7856–7863. [Google Scholar] [CrossRef] [Green Version]
- Naseeruddin, S.; Desai, S.; Venkateswar, R.L. Co-Culture of Saccharomyces cerevisiae (VS3) and Pichia stipitis (NCIM 3498) Enhances Bioethanol Yield from Concentrated Prosopis juliflora hydrolysate. 3 Biotech 2021, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Kruasuwan, W.; Puseenam, A.; Am-In, S.; Trakarnpaiboon, S.; Sornlek, W.; Kocharin, K.; Jindamorakot, S.; Tanapongpipat, S.; Bai, F.Y.; Roongsawang, N. Evaluation of Thermotolerant and Ethanol-Tolerant Saccharomyces cerevisiae as An Alternative Strain for Bioethanol Production from Industrial Feedstocks. 3 Biotech 2023, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Zhang, X.; Li, H.X.; Du, X.X.; Liang, S.W.; Zhao, X.H. Screening and Mutation of Saccharomyces cerevisiae UV-20 with A High Yield of Second Generation Bioethanol and High Tolerance of Temperature, Glucose and Ethanol. Indian J. Microbiol. 2018, 58, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Liu, K.; Chen, D.; Yuan, X.; Fang, J.; Yan, H.; Huang, L.; Chen, Y.; He, W. Improved Bioethanol Production Using CRISPR/Cas9 to Disrupt the ADH2 Gene in Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2018, 34, 154. [Google Scholar] [CrossRef]
- de Valk, S.C.; Bouwmeester, S.E.; de Hulster, E.; Mans, R. Engineering Proton-Coupled Hexose Uptake in Saccharomyces cerevisiae for Improved Ethanol Yield. Biotechnol. Biofuels Bioprod. 2022, 15, 47. [Google Scholar] [CrossRef]
- Yang, P.; Jiang, S.; Lu, S.; Jiang, S.; Jiang, S.; Deng, Y.; Lu, J.; Wang, H.; Zhou, Y. Ethanol Yield Improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta Mutant and Molecular Mechanism Exploration Based on the Metabolic Flux and Transcriptomics Approaches. Microb. Cell Fact. 2022, 21, 160. [Google Scholar] [CrossRef]
- Nijland, J.G.; Driessen, A.J.M. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Front. Bioeng. Biotechnol. 2020, 7, 464. [Google Scholar] [CrossRef]
- Shao, X.; DiMarco, K.; Richard, T.L.; Lynd, L.R. Winter Rye as A Bioenergy Feedstock: Impact of Crop Maturity on Composition, Biological Solubilization and Potential Revenue. Biotechnol. Biofuels 2015, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Q.; Zi, L.H.; Bai, F.W.; Lin, H.L.; Hao, X.M.; Yue, G.J.; Ho, N.W. Bioethanol from Lignocellulosic Biomass. Adv. Biochem. Eng. Biotechnol. 2012, 128, 25–51. [Google Scholar]
- Park, H.; Jeong, D.; Shin, M.; Kwak, S.; Oh, E.J.; Ko, J.K.; Kim, S.R. Xylose Utilization in Saccharomyces cerevisiae during Conversion of Hydrothermally Pretreated Lignocellulosic Biomass to Ethanol. Appl. Microbiol. Biotechnol. 2020, 104, 3245–3252. [Google Scholar] [CrossRef] [PubMed]
- Abo, B.O.; Gao, M.; Wang, Y.; Wu, C.; Ma, H.; Wang, Q. Lignocellulosic Biomass for Bioethanol: An Overview on Pretreatment, Hydrolysis and Fermentation Processes. Rev. Environ. Health 2019, 34, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wei, L.; Pan, X.; Liu, C.; Jiang, J.; Wang, K. The Pretreatment of Lignocelluloses with Green Solvent as Biorefinery Preprocess: A Minor Review. Front. Plant Sci. 2021, 12, 670061. [Google Scholar] [CrossRef] [PubMed]
- Moysés, D.N.; Reis, V.C.; de Almeida, J.R.; de Moraes, L.M.; Torres, F.A. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int. J. Mol. Sci. 2016, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Cunha, J.T.; Soares, P.O.; Romaní, A.; Thevelein, J.M.; Domingues, L. Xylose Fermentation Efficiency of Industrial Saccharomyces cerevisiae Yeast with Separate or Combined Xylose Reductase/xylitol Dehydrogenase and Xylose Isomerase Pathways. Biotechnol. Biofuels 2019, 12, 20. [Google Scholar] [CrossRef]
- Soni, V.K.; Krishnapriya, R.; Sharma, R.K. Algae: Biomass to Biofuel. Methods Mol. Biol. 2021, 2290, 31–51. [Google Scholar]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The Contamination and Control of Biological Pollutants in Mass Cultivation of Microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.; Silva, J.P.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingues, L.; Teixeira, J.A. Technological Trends, Global Market, and Challenges of Bio-ethanol Production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [Green Version]
- Hinz, J.M.; Laughery, M.F.; Wyrick, J.J. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro. Biochemistry 2015, 54, 7063–7066. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Barreto, J.A.; de Bem, L.S.; Menegon, Y.A.; Fier, Í.; Bueno, J.G.R.; Dos Santos, L.V.; Gross, J. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 3886–3891. [Google Scholar] [CrossRef]
- Dong, S.J.; Yi, C.F.; Li, H. Changes of Saccharomyces cerevisiae Cell Membrane Components and Promotion to Ethanol Tolerance during the Bioethanol Fermentation. Int. J. Biochem. Cell Biol. 2015, 69, 196–203. [Google Scholar] [CrossRef]
- Gnansounou, E. Production and Use of Lignocellulosic Bioethanol in Europe: Current Situation and Perspectives. Bioresour. Technol. 2010, 101, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Yinbo, Q.; Zhu, M.; Liu, K.; Bao, X.; Lin, J. Studies on Cellulosic Ethanol Production for Sustainable Supply of Liquid Fuel in China. Biotechnol. J. 2006, 1, 1235–1240. [Google Scholar] [CrossRef]
- Zou, J.; Chang, X. Past, Present, and Future Perspectives on Whey as a Promising Feedstock for Bioethanol Production by Yeast. J. Fungi 2022, 8, 395. [Google Scholar] [CrossRef]
- Jouhten, P.; Ponomarova, O.; Gonzalez, R.; Patil, K.R. Saccharomyces cerevisiae metabolism in ecological context. FEMS Yeast Res. 2016, 16, fow080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Huang, K.X.; Vadiveloo, A.; Zhou, J.L.; Yang, L.; Chen, D.Z.; Gao, F. Integrated Culture and Harvest Systems for Improved Microalgal Biomass Production and Wastewater Treatment. Bioresour. Technol. 2023, 376, 128941. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Qi, Z.; Wang, W. Constructed Microalgal-Bacterial Symbiotic (MBS) System: Classification, Performance, Partnerships and Perspectives. Sci. Total Environ. 2022, 803, 150082. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, M.; Shim, C.; Bae, S.; Jang, S. Potential of Algae-Bacteria Synergistic Effects on Vegetable Production. Front. Plant Sci. 2021, 12, 656662. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, M.K.; Savizi, I.S.P.; Lewis, N.E.; Shojaosadati, S.A. Synergisms of Machine Learning and Constraint-Based Modeling of Metabolism for Analysis and Optimization of Fermentation Parameters. Biotechnol. J. 2021, 16, e2100212. [Google Scholar] [CrossRef]
- Kim, S.R.; Park, Y.C.; Jin, Y.S.; Seo, J.H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31, 851–861. [Google Scholar] [CrossRef]
- Sànchez Nogué, V.; Karhumaa, K. Xylose Fermentation as A Challenge for Commercialization of Lignocellulosic Fuels and Chemicals. Biotechnol. Lett. 2015, 37, 761–772. [Google Scholar] [CrossRef]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution-Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Delneri, D.; O’Keefe, R.T. Non-coding RNAs in Saccharomyces cerevisiae: What Is the Function? Biochem. Soc. Trans. 2012, 40, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Tinafar, A.; Jaenes, K.; Pardee, K. Synthetic Biology Goes Cell-Free. BMC Biol. 2019, 17, 64. [Google Scholar] [CrossRef] [Green Version]
- Worst, E.G.; Finkler, M.; Schenkelberger, M.; Kurt, Ö.; Helms, V.; Noireaux, V.; Ott, A. A Methylation-Directed, Synthetic Pap Switch Based on Self-Complementary Regulatory DNA Reconstituted in an All E. coli Cell-Free Expression System. ACS Synth. Biol. 2021, 10, 2725–2739. [Google Scholar] [CrossRef]
- Fogeron, M.L.; Lecoq, L.; Cole, L.; Harbers, M.; Böckmann, A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front. Mol. Biosci. 2021, 8, 639587. [Google Scholar] [CrossRef]
- Ares, M., Jr. Preparation of Cell-Free Splicing Extracts from Saccharomyces cerevisiae. Cold Spring Harb. Protoc. 2013, 2013, 978–981. [Google Scholar] [CrossRef]
- Khattak, W.A.; Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, M.; Kim, Y.; Park, J.K. Developmental Strategies and Regulation of Cell-Free Enzyme System for Ethanol Production: A Molecular Prospective. Appl. Microbiol. Biotechnol. 2014, 98, 9561–9578. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bassler, B.L. Bacterial Quorum Sensing in Complex and Dynamically Changing Environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- Tian, X.; Ding, H.; Ke, W.; Wang, L. Quorum Sensing in Fungal Species. Annu. Rev. Microbiol. 2021, 75, 449–469. [Google Scholar] [CrossRef]
- Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial Quorum Sensing and Microbial Community Interactions. mBio 2018, 9, e02331-17. [Google Scholar] [CrossRef] [Green Version]
- Stephens, K.; Bentley, W.E. Synthetic Biology for Manipulating Quorum Sensing in Microbial Consortia. Trends Microbiol. 2020, 28, 633–643. [Google Scholar] [CrossRef]
- Huang, X.F.; Reardon, K.F. Quorum-Sensing Molecules Increase Ethanol Yield from Saccharomyces cerevisiae. FEMS Yeast Res. 2021, 21, foab056. [Google Scholar] [CrossRef]
Region | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | % of World Production |
---|---|---|---|---|---|---|---|
United States | 15,413 | 15,936 | 16,091 | 15,778 | 13,941 | 15,016 | 55% |
Brazil | 6840 | 6730 | 8060 | 8860 | 8100 | 7320 | 27% |
European Union | 1190 | 1250 | 1300 | 1350 | 1280 | 1350 | 5% |
China | 730 | 850 | 810 | 1010 | 930 | 870 | 3% |
India | 260 | 230 | 430 | 460 | 540 | 850 | 3% |
Canada | 460 | 460 | 460 | 497 | 429 | 434 | 2% |
Thailand | 330 | 380 | 390 | 430 | 390 | 360 | 1% |
Argentina | 240 | 290 | 290 | 290 | 210 | 270 | 1% |
Rest of World | 587 | 644 | 709 | 655 | 650 | 820 | 3% |
Total | 26,050 | 26,770 | 28,540 | 29,330 | 26,470 | 27,290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, P.; Wu, T.; Ruan, H. Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges. Fermentation 2023, 9, 709. https://doi.org/10.3390/fermentation9080709
Zhang H, Zhang P, Wu T, Ruan H. Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges. Fermentation. 2023; 9(8):709. https://doi.org/10.3390/fermentation9080709
Chicago/Turabian StyleZhang, Hongyang, Pengcheng Zhang, Tao Wu, and Haihua Ruan. 2023. "Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges" Fermentation 9, no. 8: 709. https://doi.org/10.3390/fermentation9080709
APA StyleZhang, H., Zhang, P., Wu, T., & Ruan, H. (2023). Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges. Fermentation, 9(8), 709. https://doi.org/10.3390/fermentation9080709