Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animal Diet and Preparation of Rumen Fluid
2.3. Experimental Design and In Vitro Fermentation
2.4. Samples Collection and Analysis
2.5. Gas Production and Curve Fitting
2.6. Statistical Analysis
3. Results
3.1. The DON Degradability
3.2. In Vitro Dry Matter Disappearance and Kinetic Gas Production
3.3. Fermentation Characteristics in Culture Fluids
3.4. Fermentation Gas Composition
4. Discussion
4.1. DON Degradability
4.2. Rumen Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control. 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Hooft, J.M.; Bureau, D.P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem. Toxicol. 2021, 157, 112616. [Google Scholar] [CrossRef]
- Morooka, N.; Uratsuji, N.; Yoshizawa, T.; Yamamoto, H. Studies on the Toxic Substances in Barley Infected with Fusarium spp. Food. Hyg. Safe. Sci. 1972, 13, 368–375. [Google Scholar] [CrossRef]
- Bin-Umer, M.A.; McLaughlin, J.E.; Basu, D.; McCormick, S.; Tumer, N.E. Trichothecene mycotoxins inhibit mitochondrial translation—Implication for the Mechanism of Toxicity. Toxins 2011, 3, 1484–1501. [Google Scholar] [CrossRef]
- Laskin, J.D.; Heck, D.E.; Laskin, D.L. The Ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic Toxicity. Toxicol. Sci. 2002, 2, 289–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, K.C.; Daigle, K.W. Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim. Biophys. Acta 1987, 923, 206–213. [Google Scholar] [CrossRef]
- Mishra, S.; Srivastava, S.; Dewangan, J.; Divakar, A.; Kumar, R.S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Crit. Rev. Food Sci. Nutr. 2019, 60, 1346–1374. [Google Scholar] [CrossRef]
- Rotter, B.A.; Prelusky, D.B.; Pestka, J.J. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health. 1996, 48, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Binder, E.M.; Heidler, D.; Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam. 2002, 19, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.S.; Lee, J.H.; Simizu, Y.; Tazaki, H.; Itabashi, H.; Kimura, N. Effects of the Fusarium mycotoxin deoxynivalenol on in vitro rumen fermentation. Anim. Feed. Sci. Technol. 2010, 162, 144–148. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain by-Products Used for Animal Feed; Food and Drug Administration: Silver Spring, MD, USA, 2010. [Google Scholar]
- Hildebrand, B.; Boguhn, J.; Dänicke, S.; Rodehutscord, M. Effect of Fusarium toxin-contaminated triticale and forage-to-concentrate ratio on fermentation and microbial protein synthesis in the rumen. J. Anim. Physiol. Anim. Nutr. Berl. 2012, 96, 307–318. [Google Scholar] [CrossRef]
- Boguhn, J.; Neumann, D.; Helm, A.; Strobel, E.; Tebbe, C.C.; Dänicke, S.; Rodehutscorda, M. Effects of concentrate proportion in the diet with or without Fusarium toxin-contaminated triticale on ruminal fermentation and the structural diversity of rumen microbial communities in vitro. Arch. Anim. Nutr. 2010, 64, 467–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debevere, S.; Cools, A.; Baere, S.; Haesaert, G.; Rychlik, M.; Croubels, S.; Fievez, V. In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity. Toxins 2020, 12, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeling, K.; Boguhn, J.; Strobel, E.; Dänicke, S.; Valenta, H.; Ueberschär, K.H.; Rodehutscord, M. On the effects of Fusarium toxin contaminated wheat and wheat chaff on nutrient utilisation and turnover of deoxynivalenol and zearalenone in vitro (Rusitec). Toxicol Vitr. 2006, 20, 703–711. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Brit. Grassland Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Zhang, D.F.; Yang, H.J. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Anim. Feed Sci. Technol. 2011, 163, 20–32. [Google Scholar] [CrossRef]
- Yang, H.J.; Tamminga, S.; Williams, B.A.; Dijkstra, J.; Boer, H. In vitro gas and volatile fatty acids production profiles of barley and maize and their soluble and washout fractions after feed processing. Anim Feed Sci Technol. 2005, 120, 125–140. [Google Scholar] [CrossRef]
- Verdouw, H.; Echteld, C.; Dekkers, E. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- Makkar, H.P.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Mcdonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [Green Version]
- SAS. Statistical Analytical System (SAS) Users Guide; Statistical Analysis Institute: Cary, NC, USA, 1999. [Google Scholar]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grings, E.E.; Blümmel, M.; Südekum, K.H. Methodological considerations in using gas production techniques for estimating ruminal microbial efficiencies for silage-based diets. Anim Feed Sci Technol. 2005, 123–124, 527–545. [Google Scholar] [CrossRef]
- Ørskov, E.R. Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 1975, 22, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H. In vitro screening of feed resources for efficiency of microbial protein synthesis. In vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe, P.E., Makkar, H., Schlink, A.C., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 107–144. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Young, L.G.; Forsberg, C. Microbial transformation of deoxynivalenol (vomitoxin). Appl. Environ. Microbiol. 1992, 58, 3857–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westlake, K.; Mackie, R.I.; Dutton, M.F. Effects of several mycotoxins on specific growth rate of Butyrivibrio fibrisolvens and toxin degradation in vitro. Appl. Environ. Microbiol. 1987, 53, 613–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, H.D.; Wu, Q.; Blake, C.K. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium. Can. J. Microbiol. 2000, 46, 692–699. [Google Scholar] [CrossRef] [PubMed]
- King, R.R.; McQueen, R.E.; Levesque, D.; Greenhalgh, R. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J. Agr. Chem. 1984, 32, 1181–1183. [Google Scholar] [CrossRef]
- Kim, S.H.; Vujanovic, V. Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express. 2017, 7, 145. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, S.; Shen, H.; Sun, C. Screen and identification of deoxynivalenol degradation strains. Sci. Technol. Cereals. Oils Foods 2013, 021, 95–97. [Google Scholar]
- Seeling, K.; Dänicke, S.; Lebzien, P.; Valenta, H.; Ueberschär, K.H.; Flachowsky, G. On the effects ofFusarium-contaminated wheat and the feed intake level on ruminal fermentation and toxin-turnover of cows. Mycotoxin Res. 2005, 21, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Matthäus, K.; Lebzien, P.; Valenta, H.; Stemme, K.; Ueberschär, K.H.; Razzazi-Fazeli, E.; Böhm, J.; Flachowsky, G. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. J. Anim. Physiol. Anim. Nutr. Berl. 2005, 89, 303–315. [Google Scholar] [CrossRef]
- Mansfield, H.R.; Endres, M.I.; Stern, M.D. Comparison of microbial fermentation in the rumen of dairy cows and dual flow continuous culture. Anim. Feed Sci. Technol. 1995, 55, 47–66. [Google Scholar] [CrossRef]
- Abe, M.; Kumeno, F. In vitro simulation of rumen fermentation: Apparatus and effects of dilution rate and continuous dialysis on fermentation and protozoal population. J. Anim. Sci. 1973, 36, 941–948. [Google Scholar] [CrossRef]
- Westlake, K.; Mackie, R.I.; Dutton, M.F. In vitro metabolism of mycotoxins by bacterial, protozoal and ovine ruminal fluid preparations. Anim. Feed Sci. Technol. 1989, 25, 169–178. [Google Scholar] [CrossRef]
- Seeling, K.; Dänicke, S.; Ueberschär, K.H.; Lebzien, P.; Flachowsky, G. On the effects of Fusarium toxin-contaminated wheat and the feed intake level on the metabolism and carry over of zearalenone in dairy cows. Food Addit. Contam. 2005, 22, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Zhou, T.; Young, J.C.; Goodwin, P.H.; Pauls, K.P. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World J. Microbiol. Biotechnol. 2012, 28, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Zhu, C.; de Lange, C.F.; Zhou, T.; He, J.; Yu, H.; Gong, J.; Young, J.C. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2011, 28, 894–901. [Google Scholar] [CrossRef]
- Gao, X.; Mu, P.; Wen, J.; Sun, Y.; Chen, Q.; Deng, Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem. Toxicol. 2018, 112, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Razzazi, E.; Böhm, J.; Ahmed, K.; Cecon, B.; Rabus, B. Investigation on the biodegradability of mycotoxins nivalenol (NIV) and deoxynivalenol (DON) in a rusitec fermentor and their monitoring by HPLC/MS. Mycotoxin Res. 2000, 16, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Gleason, C.B.; Beckett, L.M.; White, R.R. Rumen fermentation and epithelial gene expression responses to diet ingredients designed to differ in ruminally degradable protein and fiber supplies. Sci. Rep. 2022, 12, 2933. [Google Scholar] [CrossRef] [PubMed]
- Keese, C.; Meyer, U.; Rehage, J.; Spilke, J.; Boguhn, J.; Breves, G.; Dänicke, S. Ruminal fermentation patterns and parameters of the acid base metabolism in the urine as influenced by the proportion of concentrate in the ration of dairy cows with and without Fusarium toxin-contaminated triticale. Arch. Anim. Nutr. 2008, 62, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Keese, C.; Meyer, U.; Starke, A.; Wrenzycki, C.; Dänicke, S.; Rehage, J. Chronic effects of fusarium mycotoxins in rations with or without increased concentrate proportion on the insulin sensitivity in lactating dairy cows. Toxins 2018, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Q.; Li, W.; Wang, Y.; Zhang, F.; Lv, L.; Li, S.; Yang, H. High-Gossypol whole cottonseed exhibited mediocre rumen degradability and less microbial fermentation efficiency than cottonseed hull and cottonseed meal with an in vitro gas production technique. Fermentation 2022, 8, 103. [Google Scholar] [CrossRef]
- Pathak, A.K. Various factors affecting microbial protein synthesis in the rumen. Vet. World 2008, 1, 186–189. [Google Scholar] [CrossRef]
- Seeling, K.; Lebzien, P.; Dänicke, S.; Spilke, J.; Südekum, K.H.; Flachowsky, G. Effects of level of feed intake and Fusarium toxin-contaminated wheat on rumen fermentation as well as on blood and milk parameters in cows. J. Anim. Physiol. Anim. Nutr. Berl. 2006, 90, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Keese, C.; Meyer, U.; Rehage, J.; Spilke, J.; Boguhn, J.; Breves, G.; Dänicke, S. On the effects of the concentrate proportion of dairy cow rations in the presence and absence of a fusarium toxin-contaminated triticale on cow performance. Arch. Anim. Nutr. 2008, 62, 241–262. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Content |
---|---|
Maize silage | 180 |
Alfalfa hay | 200 |
Ryegrass hay | 10 |
Oat grass | 10 |
Maize | 179.9 |
Flaked corn | 132.6 |
Extruded soybean | 31.8 |
Soybean meal | 102 |
Rapeseed meal | 50.8 |
Apple meal | 16 |
Beet pulp | 16.8 |
Cottonseed | 8.8 |
Rumen fat | 13.2 |
Molasses | 11.2 |
Salt | 4.2 |
Limestone | 11.8 |
Baking soda | 6.5 |
Premixes | 5.2 |
Magnesia | 2.2 |
Items 1 | Low Forage (LF) | High Forage (HF) |
---|---|---|
Fermentation substrates composition | ||
Forage | 200 | 800 |
Concentrate | 800 | 200 |
Nutrition concentrations | ||
CP | 190.5 | 102.1 |
EE | 12.9 | 15.6 |
NDFom | 198.6 | 470.7 |
ADFom | 133.5 | 280.2 |
NFC | 525.2 | 356.6 |
Ash | 72.7 | 54.9 |
Items | Diet 1 | DON Concentrations (mg/kg) | SEM | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | Diet | L | Q | I | |||
3 h | HF | 29.63 a | 19.25 b | 19.62 b | 20.12 b | 0.799 | <0.01 | <0.01 | 0.081 | <0.01 |
LF | 21.66 a | 18.89 ab | 17.72 bc | 15.65 c | ||||||
6 h | HF | 49.32 a | 29.55 b | 23.81 c | 19.94 c | 1.682 | <0.01 | <0.01 | 0.038 | <0.01 |
LF | 34.51 a | 28.50 ab | 23.55 b | 21.82 b | ||||||
12 h | HF | 50.91 a | 36.36 b | 25.32 c | 23.39 c | 0.949 | <0.01 | <0.01 | <0.01 | <0.01 |
LF | 49.08 a | 31.15 b | 25.28 c | 24.04 c | ||||||
24 h | HF | 51.69 a | 40.39 b | 31.26 c | 26.32 d | 0.505 | <0.01 | <0.01 | <0.01 | <0.01 |
LF | 50.45 a | 38.61 b | 27.01 c | 25.62 c | ||||||
48 h | HF | 57.18 a | 42.59 b | 34.83 c | 29.58 d | 0.828 | <0.01 | <0.01 | <0.01 | <0.01 |
LF | 52.08 a | 42.25 b | 32.81 c | 29.01 d |
Items 1 | Diet | DON Concentration (mg/kg) | SEM | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Diet | L | Q | I | |||
IVDMD48, % | HF | 53.8 | 55.1 | 53.9 | 53.6 | 53.8 | 0.006 | <0.01 | 0.440 | 0.681 | 0.798 |
LF | 80.0 | 79.7 | 80.3 | 79.5 | 79.6 | ||||||
GP48, mL/g DM | HF | 77.1 | 69.3 | 69.2 | 72.4 | 72.5 | 3.485 | <0.01 | 0.335 | 0.848 | 0.433 |
LF | 112.8 | 109.1 | 113.2 | 117.8 | 102.2 | ||||||
A, mL/g DM | HF | 75.4 | 67.9 | 68.2 | 71.3 | 71.0 | 3.266 | <0.01 | 0.324 | 0.651 | 0.353 |
LF | 111.9 | 109.7 | 114.1 | 117.2 | 102.1 | ||||||
c, /h | HF | 0.123 | 0.107 | 0.105 | 0.100 | 0.102 | 0.006 | <0.01 | 0.244 | 0.031 | 0.898 |
LF | 0.130 | 0.122 | 0.118 | 0.114 | 0.116 | ||||||
T1/2, h | HF | 2.52 b | 2.61 ab | 2.80 a | 2.66 ab | 2.57 ab | 0.113 | <0.05 | 0.923 | 0.242 | 0.894 |
LF | 2.84 | 2.90 | 2.86 | 2.81 | 2.78 | ||||||
AGPR, mL/h | HF | 13.94 a | 11.08 b | 10.55 b | 10.91 b | 11.76 ab | 1.575 | <0.01 | 0.457 | 0.329 | 0.964 |
LF | 20.97 | 19.62 | 20.20 | 19.80 | 19.93 |
Items 1 | Diet | DON Concentration (mg/kg DM) | SEM | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Diet | L | Q | I | |||
pH | HF | 6.88 | 6.84 | 6.87 | 6.87 | 6.86 | 0.014 | <0.01 | 0.176 | 0.283 | 0.762 |
LF | 6.83 a | 6.78 ab | 6.78 ab | 6.79 ab | 6.78 b | ||||||
NH3-N, mg/dL | HF | 26.72 | 26.90 | 28.20 | 26.43 | 26.41 | 0.662 | <0.01 | 0.773 | 0.216 | 0.974 |
LF | 32.62 | 32.03 | 33.68 | 32.46 | 32.46 | ||||||
MCP, mg/mL | HF | 0.73 a | 0.72 a | 0.68 a | 0.54 b | 0.53 b | 0.008 | <0.01 | <0.01 | 0.013 | <0.01 |
LF | 0.79 | 0.79 | 0.79 | 0.77 | 0.76 | ||||||
tVFA, mM | HF | 126.3 | 122.3 | 112.0 | 104.0 | 100.3 | 4.737 | <0.05 | <0.01 | 0.738 | 0.841 |
LF | 142.9 a | 138.4 ab | 136.3 ab | 113.2 b | 111.4 b | ||||||
VFA pattern, % molar | |||||||||||
Acetate | HF | 53.7 | 54.6 | 54.4 | 55.3 | 54.6 | 0.727 | 0.066 | 0.281 | 0.176 | 0.450 |
LF | 51.8 | 54.6 | 54.5 | 52.4 | 53.8 | ||||||
Propionate | HF | 28.5 | 28.1 | 28.0 | 27.8 | 27.8 | 0.607 | 0.289 | 0.166 | 0.148 | 0.502 |
LF | 29.2 a | 26.8 ab | 26.5 b | 27.7 ab | 27.3 ab | ||||||
Butyrate | HF | 12.9 | 12.3 | 12.6 | 12.1 | 12.6 | 0.200 | <0.01 | 0.556 | 0.685 | 0.014 |
LF | 13.5 | 14.3 | 13.8 | 14.2 | 13.7 | ||||||
Valerate | HF | 1.77 | 1.64 | 1.74 | 1.61 | 1.71 | 0.048 | <0.01 | 0.468 | 0.652 | 0.235 |
LF | 1.95 | 1.94 | 1.90 | 2.01 | 1.89 | ||||||
Isovalerate | HF | 3.08 | 2.91 | 2.88 | 2.89 | 2.75 | 0.084 | <0.01 | 0.067 | 0.423 | 0.451 |
LF | 3.35 ab | 3.18 ab | 3.31 ab | 3.52 a | 2.99 b | ||||||
NGR | HF | 2.57 | 2.71 | 2.61 | 2.76 | 2.77 | 0.061 | 0.163 | <0.05 | 0.15 | 0.593 |
LF | 2.59 | 2.82 | 2.85 | 2.79 | 2.75 | ||||||
FE | HF | 0.789 | 0.781 | 0.781 | 0.78 | 0.780 | 0.003 | 0.722 | 0.113 | 0.11 | 0.901 |
LF | 0.789 | 0.778 | 0.777 | 0.783 | 0.780 |
Items 1 | Diet | DON Concentration (mg/kg) | SEM | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Diet | L | Q | I | |||
Fermentation gas composition (mol/100 mol) | |||||||||||
H2 | HF | 1.67 b | 1.75 ab | 1.98 ab | 1.95 ab | 2.05 a | 0.071 | <0.01 | 0.013 | 0.873 | <0.01 |
LF | 0.96 b | 1.14 ab | 1.14 ab | 1.39 a | 1.35 a | ||||||
CH4 | HF | 3.81 a | 4.50 b | 5.34 c | 7.90 d | 13.82 e | 0.125 | <0.01 | <0.01 | 0.265 | <0.01 |
LF | 3.37 c | 3.41 c | 4.46 b | 5.96 a | 6.79 a | ||||||
CO2 | HF | 29.31 a | 19.82 c | 26.26 ab | 20.89 bc | 25.20 abc | 0.912 | 0.184 | 0.415 | 0.051 | <0.01 |
LF | 23.15 ab | 21.60 bc | 22.69 b | 26.44 a | 18.98 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wu, Q.; Wang, W.; Guo, S.; Li, W.; Lv, L.; Chen, H.; Xiong, F.; Liu, Y.; Chen, Y.; et al. Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate. Fermentation 2022, 8, 369. https://doi.org/10.3390/fermentation8080369
Zhang F, Wu Q, Wang W, Guo S, Li W, Lv L, Chen H, Xiong F, Liu Y, Chen Y, et al. Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate. Fermentation. 2022; 8(8):369. https://doi.org/10.3390/fermentation8080369
Chicago/Turabian StyleZhang, Fan, Qichao Wu, Weikang Wang, Shanshan Guo, Wenjuan Li, Liangkang Lv, Hewei Chen, Fengliang Xiong, Yingyi Liu, Ying Chen, and et al. 2022. "Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate" Fermentation 8, no. 8: 369. https://doi.org/10.3390/fermentation8080369
APA StyleZhang, F., Wu, Q., Wang, W., Guo, S., Li, W., Lv, L., Chen, H., Xiong, F., Liu, Y., Chen, Y., Li, S., & Yang, H. (2022). Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate. Fermentation, 8(8), 369. https://doi.org/10.3390/fermentation8080369