Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Must and Winemaking Conditions
2.2. Microorganisms and Inoculation Conditions
2.2.1. Free-Format Procedure
2.2.2. Active Dry Yeast Immobilization Procedure
2.3. Chemical Analysis
2.4. Sensorial Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Oenological Variables
3.2. Major Volatile Compounds and Polyols
3.3. Minor Volatile Compounds
3.4. Odor Activity Value
3.5. Organoleptic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vicente, J.; Navascués, E.; Benito, S.; Marquina, D.; Santos, A. Microsatellite Typing of Lachancea thermotolerans for Wine Fermentation Monitoring. Int. J. Food Microbiol. 2023, 394, 110186. [Google Scholar] [CrossRef] [PubMed]
- Moreno García, J. Proteomic and Metabolomic Study of Wine Yeasts in Free and Immobilized Formats, Subjected to Different Stress Conditions; UCOPress: Cordoba, Spain, 2017; p. 181. [Google Scholar]
- Nisiotou, A.; Mallouchos, A.; Tassou, C.; Banilas, G. Indigenous Yeast Interactions in Dual-Starter Fermentations May Improve the Varietal Expression of Moschofilero Wine. Front. Microbiol. 2019, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, G.; Peng, Y.; Xu, N.; Xie, Y.; Zhou, H.; Liang, H.; Zhan, J.; Huang, W.; You, Y. Mechanisms and Effects of Non-Saccharomyces Yeast Fermentation on the Aromatic Profile of Wine. J. Food Compos. Anal. 2023, 124, 105660. [Google Scholar] [CrossRef]
- Battjes, J.; Melkonian, C.; Mendoza, S.N.; Haver, A.; Al-Nakeeb, K.; Koza, A.; Schrubbers, L.; Wagner, M.; Zeidan, A.A.; Molenaar, D.; et al. Ethanol-Lactate Transition of Lachancea thermotolerans Is Linked to Nitrogen Metabolism. Food Microbiol. 2023, 110, 104167. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Sanarica, L.; Zara, I.; Pisarra, C.; Gambacorta, G.; Natrella, G.; Cardinale, M. Cultivar-Dependent Effects of Non-Saccharomyces Yeast Starter on the Oenological Properties of Wines Produced from Two Autochthonous Grape Cultivars in Southern Italy. Foods 2022, 11, 3373. [Google Scholar] [CrossRef] [PubMed]
- Benito, Á.; Calderón, F.; Palomero, F.; Benito, S. Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae. Food Technol. Biotechnol. 2016, 54, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, R.; Moreno, J.; Bellincontro, A.; Centioni, L.; Puig-Pujol, A.; Peinado, R.A.; Mauricio, J.C.; García-Martínez, T. Using an Electronic Nose and Volatilome Analysis to Differentiate Sparkling Wines Obtained under Different Conditions of Temperature, Ageing Time and Yeast Formats. Food Chem. 2021, 334, 127574. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, J.; García-Martinez, T.; Moreno, J.; Mauricio, J.C.; Ogawa, M.; Luong, P.; Bisson, L.F. Impact of Yeast Flocculation and Biofilm Formation on Yeast-Fungus Coadhesion in a Novel Immobilization System. Am. J. Enol. Vitic. 2018, 69, 278–288. [Google Scholar] [CrossRef]
- López-Menchero, J.R.; Ogawa, M.; Mauricio, J.C.; Moreno, J.; Moreno-García, J. Effect of Calcium Alginate Coating on the Cell Retention and Fermentation of a Fungus-Yeast Immobilization System. LWT 2021, 144, 111250. [Google Scholar] [CrossRef]
- Gosset, M.; Roques, C.; Taillandier, P. Microbial Biofilms in Oenology. OENO One 2022, 56, 167–184. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of Two Yeast Strains in Free, Bioimmobilized or Immobilized with Alginate Forms on the Aromatic Profile of Long Aged Sparkling Wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Peinado, R.A.; Moreno, J.J.; Maestre, O.; Mauricio, J.C. Use of a Novel Immobilization Yeast System for Winemaking. Biotechnol. Lett. 2005, 27, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, T.; Puig-Pujol, A.; Peinado, R.A.; Moreno, J.; Mauricio, J.C. Potential Use of Wine Yeasts Immobilized on Penicillium chrysogenum for Ethanol Production. J. Chem. Technol. Biotechnol. 2012, 87, 351–359. [Google Scholar] [CrossRef]
- Lúquez-Caravaca, L.; Ogawa, M.; Rai, R.; Nitin, N.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Jiménez-Uceda, J.C.; Moreno-García, J. Yeast Cell Vacuum Infusion into Fungal Pellets as a Novel Cell Encapsulation Methodology. Appl. Microbiol. Biotechnol. 2023, 107, 5715–5726. [Google Scholar] [CrossRef]
- Pastor-Vega, N.; Carbonero-Pacheco, J.; Mauricio, J.C.; Moreno, J.; García-Martínez, T.; Nitin, N.; Ogawa, M.; Rai, R.; Moreno-García, J. Flor yeast immobilization in microbial biocapsules for Sherry wine production: Microvinification approach. World J. Microbiol. Biotechnol. 2023, 39, 271. [Google Scholar] [CrossRef] [PubMed]
- Puig-Pujol, A.; Bertran, E.; García-Martínez, T.; Capdevila, F.; Mínguez, S.; Mauricio, J.C. Application of a New Organic Yeast Immobilization Method for Sparkling Wine Production. Am. J. Enol. Vitic. 2013, 64, 386–394. [Google Scholar] [CrossRef]
- García-Martínez, T.; Moreno, J.; Mauricio, J.C.; Peinado, R. Natural Sweet Wine Production by Repeated Use of Yeast Cells Immobilized on Penicillium chrysogenum. LWT 2015, 61, 503–509. [Google Scholar] [CrossRef]
- Ogawa, M.; Bisson, L.F.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. New Insights on Yeast and Filamentous Fungus Adhesion in a Natural Co-Immobilization System: Proposed Advances and Applications in Wine Industry. Appl. Microbiol. Biotechnol. 2019, 103, 4723–4731. [Google Scholar] [CrossRef] [PubMed]
- OIV. Available online: https://www.oiv.int/en (accessed on 7 February 2024).
- Kritzinger, E.C.; Bauer, F.F.; Du Toit, W.J. Role of Glutathione in Winemaking: A Review. J. Agric. Food Chem. 2013, 61, 269–277. [Google Scholar] [CrossRef] [PubMed]
- De Vero, L.; Bonciani, T.; Verspohl, A.; Mezzetti, F.; Giudici, P. High-Glutathione Producing Yeasts Obtained by Genetic Improvement Strategies: A Focus on Adaptive Evolution Approaches for Novel Wine Strains. AIMS Microbiol. 2017, 3, 155–170. [Google Scholar] [CrossRef]
- Muñoz-Castells, R.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast. Fermentation 2023, 9, 1023. [Google Scholar] [CrossRef]
- Binati, R.L.; Larini, I.; Salvetti, E.; Torriani, S. Glutathione Production by Non-Saccharomyces Yeasts and Its Impact on Winemaking: A Review. Food Res. Int. 2022, 156, 111333. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Navascués, E.; Calderón, F.; Santos, A.; Marquina, D.; Benito, S. An Integrative View of the Role of Lachancea Thermotolerans in Wine Technology. Foods 2021, 10, 2878. [Google Scholar] [CrossRef]
- Vaquero, C.; Escott, C.; Heras, J.M.; Carrau, F.; Morata, A. Co-Inoculations of Lachancea thermotolerans with Different Hanseniaspora Spp.: Acidification, Aroma, Biocompatibility, and Effects of Nutrients in Wine. Food Res. Int. 2022, 161, 111891. [Google Scholar] [CrossRef]
- Nedović, V.; Gibson, B.; Mantzouridou, T.F.; Bugarski, B.; Djordjević, V.; Kalušević, A.; Paraskevopoulou, A.; Sandell, M.; Šmogrovičová, D.; Yilmaztekin, M. Aroma Formation by Immobilized Yeast Cells in Fermentation Processes. Yeast 2015, 32, 173–216. [Google Scholar] [CrossRef]
- Comuzzo, P.; del Fresno, J.M.; Voce, S.; Loira, I.; Morata, A. Emerging Biotechnologies and Non-Thermal Technologies for Winemaking in a Context of Global Warming. Front. Microbiol. 2023, 14, 1273940. [Google Scholar] [CrossRef]
- Ogawa, M.; Vararu, F.; Moreno-Garcia, J.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Analyzing the Minor Volatilome of Torulaspora delbrueckii in an Alcoholic Fermentation. Eur. Food Res. Technol. 2022, 248, 613–624. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Moio, L. Influence of Yeast Strain on Odor-Active Compounds in Fiano Wine. Appl. Sci. 2021, 11, 7767. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Du, G.; Gao, Y.T.; Wang, L.W.; Meng, D.; Li, B.J.; Brennan, C.; Wang, M.Y.; Zhao, H.; Wang, S.Y.; et al. The Effect of Carbonic Maceration during Winemaking on the Color, Aroma and Sensory Properties of ‘Muscat Hamburg’ Wine. Molecules 2019, 24, 3120. [Google Scholar] [CrossRef] [PubMed]
- Cometto-Muñiz, J.E.; Cain, W.S.; Abraham, M.H.; Gil-Lostes, J. Concentration-Detection Functions for the Odor of Homologous n-Acetate Esters. Physiol. Behav. 2008, 95, 658–667. [Google Scholar] [CrossRef]
- Zhu, L.X.; Zhang, M.M.; Shi, Y.; Duan, C.Q. Evolution of the Aromatic Profile of Traditional Msalais Wine during Industrial Production. Int. J. Food Prop. 2019, 22, 911–924. [Google Scholar] [CrossRef]
- Pardo, E.; Rico, J.; Gil, J.V.; Orejas, M. De Novo Production of Six Key Grape Aroma Monoterpenes by a Geraniol Synthase-Engineered S. cerevisiae Wine Strain. Microb. Cell Fact. 2015, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B.; Ebeler, S.E.; Hopfer, H. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules 2015, 20, 21609–21625. [Google Scholar] [CrossRef]
- Song, X.; Dai, F.; Yao, J.; Li, Z.; Huang, Z.; Liu, H.; Zhu, Z. Characterization of the Volatile Profile of Feijoa (Acca sellowiana) Fruit at Different Ripening Stages by HS-SPME-GC/MS. LWT 2023, 184, 115011. [Google Scholar] [CrossRef]
- Martín-García, F.J.; Palacios-Fernández, S.; López de Lerma, N.; García-Martínez, T.; Mauricio, J.C.; Peinado, R.A. The Effect of Yeast, Sugar and Sulfur Dioxide on the Volatile Compounds in Wine. Fermentation 2023, 9, 541. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative Analysis of Headspace Volatile Compounds Using Comprehensive Two-Dimensional Gas Chromatography and Their Contribution to the Aroma of Chardonnay Wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, P.; Xiao, Q.; Xiao, Z.; Mao, H.; Zhang, J. Characterization of Odor-Active Volatiles and Odor Contribution Based on Binary Interaction Effects in Mango and Vodka Cocktail. Molecules 2020, 25, 1083. [Google Scholar] [CrossRef]
- Guclu, G.; Sevindik, O.; Kelebek, H.; Selli, S. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil. Foods 2016, 5, 46. [Google Scholar] [CrossRef]
- Fernández-Fernández, E.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Falqué-López, E. Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation 2022, 8, 559. [Google Scholar] [CrossRef]
WY | LT | BC | HG | |
---|---|---|---|---|
pH | 3.225 ± 0.005 a | 3.39 ± 0.03 b | 3.40 ± 0.02 b | 2 |
Volatile acidity (g·L−1) | 0.27 ± 0.01 a | 0.39 ± 0 b | 0.44 ± 0.02 c | 3 |
Total acidity (g·L−1) | 7.70 ± 0.05 a | 9.5 ± 0.2 c | 8.80 ± 0.08 b | 3 |
Ethanol (% v/v) | 13.95 ± 0.05 c | 12.3 ± 0.3 a | 12.9 ± 0.5 b | 3 |
Reducing sugars (g·L−1) | 0.17 ± 0.00 a | 0.59 ± 0.2 a | 2.4 ± 0.7 b | 2 |
Glutathione (mg·L−1) | 0.64 ± 0.04 a | 6.6 ± 0.1 c | 3.2 ± 0.7 b | 3 |
Lactic acid (mg·L−1) | 234 ± 21 a | 4714 ± 521 c | 3992 ± 436 b | 3 |
Malic acid (mg·L−1) | 875 ± 67 c | 436 ± 22 a | 545 ± 85 b | 3 |
Absorbance 420 nm | 0.138 ± 0.001 c | 0.090 ± 0.004 a | 0.100 ± 0.005 b | 3 |
Absorbance 520 nm | 0.034 ± 0.001 b | 0.024 ± 0.005 a | 0.024 ± 0.001 a | 2 |
Absorbance 620 nm | 0.015 ± 0.002 a | 0.013 ± 0.004 a | 0.012 ± 0.001 a | 1 |
IPT (Absorbance 280 nm) | 5.7 ± 0.2 c | 4.32 ± 0.05 a | 5.1 ± 0.2 b | 3 |
Compounds | CAS | WY | LT | BC | HG | OPT | Aroma Descriptor | OS |
---|---|---|---|---|---|---|---|---|
Acetaldehyde | 75-07-0 | 69 ± 11 a | 200 ± 44 b | 212 ± 18 b | 2 | 10 I | Ethereal, aldehydic, fruity | 1, 2 |
Ethyl acetate | 141-78-6 | 58.7 ± 0.7 a | 86 ± 7 c | 71 ± 3 b | 3 | 7.5 I | Ethereal, fruity, sweet, green | 1, 2, 4 |
1,1-Diethoxyethane | 105-57-7 | 0 a | 8 ± 3 b | 1.45 ± 0.04 a | 2 | 1 I | Green fruit, liquorice, ethereal, nu | 1, 4 |
Methanol | 67-56-1 | 42 ± 3 a | 40 ± 2 a | 79 ± 5 b | 2 | 668 I | Alcohol, Chemical. medicinal | 1 |
1-Propanol | 71-23-8 | 22 ± 1 a | 69 ± 2 b | 68 ± 4 b | 2 | 830 I | Alcoholic, fusel, musty | 1, 4 |
Isobutanol | 78-83-1 | 65 ± 5 a | 75 ± 4 b | 77 ± 3 b | 2 | 40 I | Ethereal, fusel alcohol | 1 |
2-Methyl-1-butanol | 137-32-6 | 54 ± 2 a | 73 ± 2 b | 81 ± 4 c | 3 | 30 I | Alcoholic, nail polish | 1 |
3-Methyl-1-butanol | 123-51-3 | 314 ± 8 a | 317 ± 11 a | 325 ± 9 a | 1 | 30 I | Alcohol, nail polish | 1 |
Acetoin | 513-86-0 | 37 ± 3 a | 145 ± 8 b | 171 ± 18 c | 3 | 30 I | Buttery, creamy, milky, fatty | 6 |
Ethyl lactate | 97-64-3 | 17 ± 2 a | 95 ± 9 c | 80 ± 7 b | 3 | 100 I | Fruity, buttery | 2 |
2,3-Butanediol levo | 24347-58-8 | 445 ± 145 b | 328 ± 30 a | 313 ± 52 a | 2 | 668 I | Fruity, creamy, buttery | 2, 6 |
2,3-Butanediol meso | 5341-95-7 | 161 ± 48 a | 125 ± 9 a | 127 ± 16 a | 1 | 668 I | Fruity, creamy, buttery | 2, 6 |
Diethyl succinate | 123-25-7 | 12 ± 3 b | 0 a | 0 a | 2 | 100 I | Fruity, apple | 2 |
2-Phenylethanol | 60-12-8 | 58 ± 14 a | 82 ± 7 b | 87 ± 5 b | 2 | 10 I | Floral, rose | 5 |
Glycerol (g·L−1) | 56-81-5 | 13 ± 3 ab | 15 ± 2 b | 12.1 ± 0.7 a | 2 | Non-volatile, Confers body, smoothness, and sweet taste |
Compounds | CAS | WY | LT | BC | HG | OPT | Aroma Descriptor | OS |
---|---|---|---|---|---|---|---|---|
Acetates (8) | ||||||||
Butyl acetate | 123-86-4 | 1.5 ± 0.4 a | 3.7 ± 0.4 b | 3.9 ± 0.5 b | 2 | 4600 I | Sweet, fruity, banana | 2 |
Isoamyl acetate | 123-92-2 | 708 ± 70 c* | 316 ± 68 a* | 529 ± 63 b* | 3 | 30 II | Banana | 2 |
(Z)-3-Hexenyl acetate | 3681-71-8 | 4 ± 1 b | 1.8 ± 0.5 a | 2.3 ± 0.2 a | 2 | 8 III | Green, apple, pear, melon | 2, 4 |
Hexyl acetate | 142-92-7 | 1.4 ± 0.5 b | 0.23 ± 0.05 a | 0.3 ± 0.1 a | 2 | 2 II | Apple, pear | 2, 3 |
Octyl acetate | 112-14-1 | 2.3 ± 0.1 a | 2.3 ± 0.1 a | 2.4 ± 0.2 a | 1 | 20 IV | Green, herbal, waxy | 5, 11 |
Ethyl phenylacetate | 101-97-3 | 2.2 ± 0.3 a | 3.7 ± 0.3 c | 3.0 ± 0.6 b | 3 | 73 V | Floral, honey, rose | 5, 10 |
2-Phenylethyl acetate | 103-45-7 | 3697 ± 321 b* | 318 ± 49 a* | 544 ± 31 a* | 2 | 250 II | Fruity, floral, rose | 5, 10 |
Geranyl acetate | 105-87-3 | 2.7 ± 0.9 a | 3.7 ± 0.2 b | 4.0 ± 0.3 b | 2 | 9 VI | Floral, rose, waxy | 5 |
Ethyl Esters (11) | ||||||||
Ethyl isobutyrate | 97-62-1 | 29 ± 3 a* | 58 ± 2 c* | 52 ± 5 b* | 3 | 15 II | Apple, strawberry | 2 |
Ethyl butyrate | 105-54-4 | 38 ± 4 b* | 36 ± 4 ab* | 34 ± 2 a* | 2 | 20 II | Fruity, tutti frutti | 2 |
Ethyl 2-methylbutyrate | 7452-79-1 | 0 a | 0 a | 2.9 ± 0.3 b | 2 | 18 II | Fruity, estery, berry | 2 |
Ethyl 3-methylbutyrate | 108-64-5 | 5.0 ± 0.8 b* | 0 a | 0 a | 2 | 3 II | Green pineapple | 2, 3 |
Ethyl hexanoate | 123-66-0 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1 | 14 II | Pineapple, green banana | 2, 3 |
Ethyl heptanoate | 106-30-9 | 0.19 ± 0.01 b | 0.13 ± 0.02 a | 0.14 ± 0.01 a | 2 | 2.2 II | Fruity pineapple | 2, 3 |
Ethyl octanoate | 106-32-1 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1 | 5 II | Pineapple, floral | 2, 11 |
Ethyl decanoate | 110-38-3 | 23 ± 1 a | 21.1 ± 0.7 a | 31 ± 3 b | 2 | 200 II | Fruity, sweet apple, grape | 2, 11 |
Ethyl dodecanoate | 106-33-2 | 13.8 ± 0.7 a | 14 ± 3 a | 39 ± 6 b | 2 | 2000 II | Creamy, floral | 11 |
Ethyl tetradecanoate | 124-06-1 | 8.4 ± 0.7 b | 6.8 ± 0.9 a | 8.5 ± 0.9 b | 2 | 2000 II | Creamy, waxy, violet | 5, 6 |
Ethyl hexadecanoate | 628-97-7 | 13 ± 2 c | 8 ± 1 a | 10 ± 1 b | 3 | 2000 II | Fruity, creamy, milky | 2, 6, 11 |
Other esters (4) | ||||||||
Cis-3-Hexenyl butyrate | 16,491-36-4 | 4.6 ± 0.8 b* | 3.8 ± 0.5 a* | 3.5 ± 0.4 a* | 2 | 0.50 VIII | Green, apple, fruity | 4 |
2-Phenylethyl butanoate | 103-52-6 | 0.7 ± 0.5 a | 0.8 ± 0.3 a | 1.7 ± 0.3 b | 2 | 200 II | Floral, musty | 5 |
Phenethyl benzoate | 94-47-3 | 3.2 ± 0.2 a | 3.3 ± 0.4 a | 3.1 ± 0.2 a | 1 | n.f | Rose, balsamic, honey | 5 |
Trans-Methyldihydrojasmonate | 24,851-98-7 | 0.8 ± 0.5 a | 0.6 ± 0.1 a | 0.8 ± 0.1 a | 1 | 70 IX | Floral, oily, jasmin | 5 |
Higher alcohols (4) | ||||||||
Hexanol | 111-27-3 | 246 ± 36 a | 235 ± 35 a | 295 ± 16 b | 2 | 2500 II | Grass | 4 |
2-Ethyl-1-hexanol | 104-76-7 | 14 ± 3 a | 19 ± 5 b | 20 ± 3 b | 2 | 8000 VII | Citrus, fresh, floral, oily, sweet | 7 |
Dodecanol | 112-53-8 | 6 ± 3 b | 4 ± 1 a | 3.2 ± 0.8 a | 2 | 1000 IX | Waxy, soapy, fatty | 11 |
2-Methoxy-4-vinylphenol | 7786-61-0 | 88 ± 17 b | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 2 | 125.8 IX | spicy, clove, smoky | 9 |
Lactones (4) | ||||||||
γ-Butyrolactone | 96-48-0 | 13,864 ± 2411 a | 14,376 ± 1620 a | 13,681 ± 918 a | 1 | 35,000 IX | Creamy, oily, fatty | 6 |
γ-Crotonolactone | 497-23-4 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1 | 1000 II | Buttery, toasty | 6 |
γ-Nonalactone | 104-61-0 | 6.0 ± 1.0 b | 4.0 ± 0.9 a | 6.3 ± 0.6 b | 2 | 30 II | Creamy. Coconut | 6, 2 |
β-Damascenone | 23,696-85-7 | 2.36 ± 0.08 c* | 1.9 ± 0.2 a* | 2.1 ± 0.2 b* | 3 | 0.05 III | Floral, sweet, fruity | 5, 8 |
Carbonyl compounds (8) | ||||||||
Hexanal | 66-25-1 | 3.0 ± 0.7 a | 4.2 ± 0.7 b | 3.6 ± 0.5 ab | 2 | 9.1 VII | Green, fatty, leafy | 4 |
Furfural | 98-01-1 | 530 ± 116 a | 438 ± 33 a | 683 ± 121 b | 2 | 770 II | Burned almonds, fusel alcohol | 1, 9 |
Benzaldehyde | 100-52-7 | 0 a | 3.7 ± 0.3 b | 7 ± 2 c | 3 | 1100 II | Caramel | 2 |
Octanal | 124-13-0 | 0 a | 1.5 ± 0.3 c | 1.1 ± 0.2 b | 3 | 2.5 II | Citrus | 7 |
Nonanal | 124-19-6 | 7.2 ± 0.8 a* | 9.2 ± 0.5 c* | 8.4 ± 0.5 b* | 3 | 2.5 II | Citrus | 7 |
2-Phenylacetaldehyde | 122-78-1 | 0 a | 8 ± 1 b* | 10.3 ± 0.7 c* | 3 | 1 X | Honey, floral, rose | 4, 10 |
Decanal | 112-31-2 | 5.5 ± 0.5 a* | 7.9 ± 0.6 b* | 7.7 ± 0.2 b* | 2 | 1.25 II | Citrus | 8, 11 |
3-Heptanone | 106-35-4 | 0.08 ± 0.08 b | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 2 | n.f | Fruity, ketonic, cheesy | 4 |
Terpenes and derivatives (5) | ||||||||
Limonene | 5989-27-5 | 4679 ± 272 b* | 3521 ± 195 a* | 3198 ± 342 a* | 2 | 10 II | Citrus, herbal | 1,7 |
E-Geranyl acetone | 689-67-8 | 1.5 ± 0.5 b | 0.6 ± 0.1 a | 0.9 ± 0.2 a | 2 | 60 V | Floral, rose, leaf | 5 |
Z-Geranyl acetone | 689-67-8 | 1.81 ± 0.05 a | 1.8 ± 0.1 a | 1.80 ± 0.05 a | 1 | 60 V | Floral, rose, leaf | 5 |
Nerolidol | 7212-44-4 | 0 a | 0.06 ± 0.07 b | 0 a | 2 | 700 IX | Floral, green, citrus | 4, 5 |
Farnesol | 4602-84-0 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1 | 20 V | Floral, sweet | 5 |
Miscellaneous (2) | ||||||||
2-Pentylfuran | 3777-69-3 | 6.0 ± 0.9 b* | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 2 | 6 X | Fruity, green | 3 |
Benzophenone | 119-61-9 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1 | n.f | Balsamic, rose, metallic | 5, 8 |
Attributes | WY | LT | BC | HGs |
---|---|---|---|---|
Sight | 7.55 a | 8.55 b | 8.45 b | 2 |
Smell | 14.82 a | 13.91 a | 14.18 a | 1 |
Taste | 27.73 a | 26.91 a | 31.55 b | 2 |
Overall quality | 21.36 a | 21.36 a | 24.45 b | 2 |
Total score | 71.45 a | 70.73 a | 78.64 b | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Castells, R.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties. Fermentation 2024, 10, 303. https://doi.org/10.3390/fermentation10060303
Muñoz-Castells R, Moreno J, García-Martínez T, Mauricio JC, Moreno-García J. Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties. Fermentation. 2024; 10(6):303. https://doi.org/10.3390/fermentation10060303
Chicago/Turabian StyleMuñoz-Castells, Raquel, Juan Moreno, Teresa García-Martínez, Juan Carlos Mauricio, and Jaime Moreno-García. 2024. "Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties" Fermentation 10, no. 6: 303. https://doi.org/10.3390/fermentation10060303
APA StyleMuñoz-Castells, R., Moreno, J., García-Martínez, T., Mauricio, J. C., & Moreno-García, J. (2024). Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties. Fermentation, 10(6), 303. https://doi.org/10.3390/fermentation10060303