Growth, Substrate, and Metabolite Changes of Probiotic Bifidobacterium animalis subsp. lactis in Soy (Tofu) Whey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bifidobacterial Cultures
2.2. Soy (Tofu) Whey Preparation
2.3. Fermentation
2.4. Sugar, Acid, Isoflavone, Amino Acid Analysis
2.5. Antioxidant Capacity Assays
2.6. Vitamin B12 Analysis
2.7. Mineral Analysis
2.8. Volatile Analysis
2.9. Statistical Analysis
3. Results & Discussion
3.1. B. lactis Growth and pH Changes
3.2. Sugar and Organic Acid Changes
CN | G | GC | GCY | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | |
°Brix+*@ | 2.01 ± 0.02 g | 1.86 ± 0.03 h | 2.00 ± 0.01 g | 3.73 ± 0.02 d | 3.58 ± 0.02 f | 3.73 ± 0.01 d | 3.77 ± 0.02 cd | 3.65 ± 0.04 e | 3.64 ± 0.02 ef | 4.05 ± 0.04 a | 3.82 ± 0.04 bc | 3.86 ± 0.07 b |
pH+*@ | 5.72 ± 0.01 a | 4.21 ± 0.05 de | 5.38 ± 0.09 bc | 5.71 ± 0.01 a | 4.14 ± 0.02 ef | 5.41 ± 0.10 b | 5.22 ± 0.00 c | 4.34 ± 0.13 d | 4.18 ± 0.04 def | 5.36 ± 0.02 bc | 4.01 ± 0.0 6f | 4.15 ± 0.18 ef |
Cell Count Log (CFU/mL)+*@ | 0.00 ± 0.00 e | 7.30 ± 0.10 ab | 3.11 ± 0.40 d | 0.00 ± 0.00 e | 7.67 ± 0.21 a | 2.62 ± 0.07 d | 0.00 ± 0.00 e | 5.8 ± 0.45 c | 7.79 ± 0.44 a | 0.00 ± 0.00 e | 7.51 ± 0.07 ab | 6.71 ± 0.90 b |
Sugars (g/L) | ||||||||||||
Stachyose +* | 3.53 ± 0.06 a | 3.78 ± 0.08 a | 3.76 ± 0.08 a | 3.35 ± 0.25 a | 3.38 ± 0.39 a | 3.54 ± 0.10 a | 3.31 ± 0.13 a | 3.66 ± 0.11 a | 3.46 ± 0.32 a | 3.42 ± 0.28 a | 3.6 ± 0.06 a | 3.66 ± 0.24 a |
Raffinose + | 0.87 ± 0.03 ab | 0.79 ± 0.04 b | 0.88 ± 0.03 ab | 0.84 ± 0.05 ab | 0.87 ± 0.05 ab | 0.89 ± 0.07 ab | 0.85 ± 0.07 ab | 0.87 ± 0.03 ab | 0.87 ± 0.11 ab | 0.84 ± 0.09 ab | 0.85 ± 0.07 ab | 0.97 ± 0.09 a |
Sucrose +*@ | 4.65 ± 0.04 a | 1.58 ± 0.14 e | 4.18 ± 0.03 a | 4.41 ± 0.30 a | 2.69 ± 0.41 cd | 4.48 ± 0.14 a | 4.42 ± 0.16 a | 3.41 ± 0.04 b | 3.29 ± 0.36 bc | 4.66 ± 0.33 a | 2.56 ± 0.06 d | 3.22 ± 0.48 bc |
Glucose +*@ | 0.78 ± 0.04 c | 0.49 ± 0.04 c | 0.84 ± 0.04 c | 21.55 ± 1.75 a | 17.81 ± 2.61 b | 22.27 ± 0.14 a | 22.30 ± 0.74 a | 21.3 ± 0.26 a | 20.00 ± 1.48 ab | 22.14 ± 1.57 a | 19.59 ± 0.55 ab | 19.7 ± 1.35 ab |
Fructose +* | 0.44 ± 0.05 b | 0.54 ± 0.07 ab | 0.67 ± 0.06 ab | 0.53 ± 0.10 ab | 0.58 ± 0.09 ab | 0.55 ± 0.07 ab | 0.53 ± 0.10 ab | 0.77 ± 0.17 a | 0.79 ± 0.26 a | 0.59 ± 0.10 ab | 0.61 ± 0.05 ab | 0.71 ± 0.15 ab |
Total Sugars +*@ | 10.24 ± 0.05 d | 7.14 ± 0.29 d | 10.31 ± 0.21 d | 30.65 ± 2.37 ab | 25.29 ± 3.51 c | 31.69 ± 0.27 a | 31.36 ± 1.10 ab | 29.98 ± 0.44 ab | 28.38 ± 2.44 abc | 31.63 ± 2.30 a | 27.18 ± 0.65 bc | 28.21 ± 2.21 abc |
Organic acids (g/L) | ||||||||||||
Citric acid +*@ | 4.89 ± 0.13 a | 4.15 ± 0.28 abc | 4.65 ± 0.18 ab | 4.64 ± 0.45 ab | 4.03 ± 0.19 bc | 4.74 ± 0.13 ab | 3.83 ± 0.43 cd | 3.58 ± 0.12 cd | 3.20 ± 0.67 d | 4.10 ± 0.3 bc | 3.67 ± 0.15 cd | 3.77 ± 0.11 cd |
α-Ketoglutaric acid +*@ | 0.00 ± 0.00 d | 0.10 ± 0.01 c | 0.11 ± 0.01 c | 0.00 ± 0.00 d | 0.11 ± 0.02 c | 0.11 ± 0.01 c | 0.00 ± 0.00 d | 0.12 ± 0.01 bc | 0.14 ± 0.03 ab | 0.00 ± 0.00 d | 0.13 ± 0.01 abc | 0.15 ± 0.02 a |
Malic acid * | 0.38 ± 0.03 ab | 0.34 ± 0.07 ab | 0.32 ± 0.03 b | 0.36 ± 0.04 ab | 0.38 ± 0.12 ab | 0.36 ± 0.02 ab | 0.37 ± 0.06 ab | 0.46 ± 0.08 ab | 0.41 ± 0.16 ab | 0.53 ± 0.07 a | 0.43 ± 0.09 ab | 0.42 ± 0.08 ab |
Pyruvic acid +*@ | 0.00 ± 0.00 d | 0.09 ± 0.01 bc | 0.07 ± 0.02 c | 0.00 ± 0.00 d | 0.08 ± 0.02 bc | 0.06 ± 0.02 c | 0.00 ± 0.00 d | 0.08 ± 0.01 bc | 0.08 ± 0.02 bc | 0.00 ± 0.00 d | 0.1 ± 0.01 ab | 0.12 ± 0.02 a |
Succinic acid +@ | 1.35 ± 0.05 b | 0.30 ± 0.03 e | 0.61 ± 0.03 cd | 1.27 ± 0.16 b | 0.34 ± 0.05 e | 0.66 ± 0.05 c | 1.37 ± 0.23 b | 0.43 ± 0.11 cde | 0.36 ± 0.10 e | 1.61 ± 0.07 a | 0.36 ± 0.04 e | 0.40 ± 0.05 de |
Lactic acid +*@ | 0.00 ± 0.00 e | 2.03 ± 0.06 b | 0.64 ± 0.10 d | 0.00 ± 0.00 e | 2.22 ± 0.11 b | 0.58 ± 0.03 d | 0.00 ± 0.00 e | 1.37 ± 0.26 c | 1.54 ± 0.28 c | 0.00 ± 0.00 e | 2.88 ± 0.21 a | 2.48 ± 0.5 ab |
Acetic acid +*@ | 0.00 ± 0.00 c | 1.66 ± 0.11 b | 0.54 ± 0.10 c | 0.00 ± 0.00 c | 1.74 ± 0.13 b | 0.49 ± 0.09 c | 0.00 ± 0.00 c | 1.32 ± 0.22 b | 1.66 ± 0.35 b | 0.00 ± 0.00 c | 2.66 ± 0.25 a | 2.57 ± 0.61 a |
Total acids +*@ | 6.60 ± 0.16 cd | 8.63 ± 0.19 ab | 6.90 ± 0.24 cd | 6.25 ± 0.64 cd | 8.85 ± 0.41 ab | 6.93 ± 0.19 cd | 5.55 ± 0.69 d | 7.28 ± 0.37 bc | 7.36 ± 1.57 bc | 6.22 ± 0.43 cd | 10.18 ± 0.38 a | 9.87 ± 1.17 a |
Acid molar ratio (A/L)+*@ | 0.00 ± 0.00 d | 1.23 ± 0.07 bc | 1.27 ± 0.21 bc | 0.00 ± 0.00 d | 1.18 ± 0.10 c | 1.26 ± 0.20 bc | 0.00 ± 0.00 d | 1.45 ± 0.08 ab | 1.61 ± 0.08 a | 0.00 ± 0.00 d | 1.39 ± 0.07 abc | 1.55 ± 0.06 a |
3.3. Free Amino Acid Changes
3.4. Isoflavone and Antioxidant Capacity Changes
3.5. Vitamin B12 Changes
CN | G | GC | GCY | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | T 0 h ‡ | T 48 h Bl-04 | T 48 h B94 | |
Isoflavones (mg/L) | ||||||||||||
Daidzin +*@ | 34.37 ± 1.57 a | 16.80 ± 0.83 de | 27.2 ± 4.27 abcd | 33.02 ± 1.93 ab | 21.44 ± 6.47 bcde | 27.12 ± 1.7 abcd | 29.57 ± 6.03 abc | 19.95 ± 6.95 cde | 24.47 ± 0.10 abcde | 23.29 ± 10.28 abcde | 22.77 ± 4.04 abcde | 14.00 ± 2.23 e |
Glycitin | 7.00± 0.56 a | 5.67 ± 0.20 a | 6.22 ± 0.99 a | 7.03 ± 0.47 a | 5.27 ± 1.63 a | 6.81 ± 0.21 a | 5.92 ± 1.31 a | 5.66 ± 1.57 a | 6.93 ± 0.08 a | 4.57 ± 1.99 a | 5.73 ± 0.90 a | 5.94 ± 0.36 a |
Genistin +* | 44.80 ± 1.81 a | 11.69 ± 1.34 de | 22.22 ± 3.51 cde | 42.78 ± 2.28 ab | 17.18 ± 5.37 de | 19.97 ± 0.84 cde | 37.91 ± 7.55 ab | 16.01 ± 5.58 de | 23.92 ± 0.70 cd | 30.47 ± 13.64 bc | 16.55 ± 2.03 de | 9.66 ± 2.08 e |
Total glucosides +*@ | 86.15 ± 3.91 a | 34.15 ± 2.18 de | 55.63 ± 8.74 cde | 82.81 ± 4.63 ab | 43.88 ± 13.42 de | 53.89 ± 1.55 cde | 73.38 ± 14.86 abc | 41.62 ± 13.97 de | 55.31 ± 0.73 cde | 58.32 ± 25.89 bcd | 45.04 ± 6.95 de | 29.59 ± 4.19 e |
Daidzein +@ | 7.61 ± 0.56 de | 13.71 ± 0.96 ab | 7.64 ± 1.15 de | 7.03 ± 0.55 de | 8.72 ± 2.94 cde | 9.72 ± 0.36 bcd | 5.81 ± 1.29 de | 9.59 ± 2.73 bcd | 12.55 ± 0.93 abc | 4.80 ± 2.03 e | 8.67 ± 1.32 cde | 16.47 ± 2.64 a |
Glycitein +@ | 2.12 ± 0.34 abcd | 2.31 ± 0.18 ab | 1.83 ± 0.13 bcd | 2.04 ± 0.09 abcd | 1.85 ± 0.18 bcd | 1.95 ± 0.07 bcd | 1.72 ± 0.29 cd | 1.88 ± 0.27 bcd | 2.23 ± 0.13 abc | 1.64 ± 0.25 d | 1.89 ± 0.21 bcd | 2.50 ± 0.24 a |
Genistein +*@ | 3.36 ± 0.18 d | 11.21 ± 1.02 ab | 7.25 ± 1.07 c | 3.30 ± 0.23 d | 7.79 ± 2.53 bc | 9.53 ± 0.33 bc | 2.51 ± 0.46 d | 8.34 ± 2.09 bc | 11.59 ± 1.43 ab | 2.31 ± 1.03 d | 8.91 ± 1.76 bc | 14.82 ± 3.02 a |
Total aglycones +@ | 13.08 ± 0.93 def | 27.22 ± 2.1 ab | 16.71 ± 2.33 def | 12.37 ± 0.75 ef | 18.34 ± 5.59 cde | 21.19 ± 0.39 bcd | 10.03 ± 1.98 f | 19.8 ± 4.95 bcde | 26.35 ± 2.46 abc | 8.73 ± 3.29 f | 19.46 ± 3.26 bcde | 33.79 ± 5.88 a |
Total isoflavones + | 99.23 ± 4.28 a | 61.36 ± 4.22 c | 72.33 ± 10.92 abc | 95.18 ± 5.17 ab | 62.22 ± 18.89 c | 75.08 ± 1.79 abc | 83.41 ± 16.81 abc | 61.42 ± 18.11 c | 81.65 ± 3.12 abc | 67.04 ± 29.17 abc | 64.49 ± 10.2 bc | 63.38 ± 1.71 bc |
ORAC (Trolox equivalent, mg/mL) +*@ | 0.38 ± 0.12 de | 0.65 ± 0.11 bcd | 0.33 ± 0.08 e | 0.48 ± 0.09 bcde | 0.55 ± 0.06 bcde | 0.35 ± 0.13 de | 0.55 ± 0.09 cde | 1.09 ± 0.14 a | 0.70 ± 0.10 bc | 0.73 ± 0.18 bc | 0.77 ± 0.10 ab | 0.67 ± 0.05 bcd |
DPPH (Trolox equivalent, mg/mL) +*@ | 0.004 ± 0.01 e | 0.03 ± 0.01 bcd | 0.02 ± 0.01 bcde | 0.01 ± 0.00 de | 0.03 ± 0.01 bcd | 0.02 ± 0.01 bcde | 0.02 ± 0.00 cde | 0.08 ± 0.01 a | 0.06 ± 0.00 bc | 0.01 ± 0.00 de | 0.07 ± 0.01 b | 0.06 ± 0.02 bc |
Vitamin B12 (µg/L) +*@ | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 3.01 ± 0.73 b | 2.06 ± 0.26 c | 0.00 ± 0.00 d | 4.56 ± 0.49 a | 2.06 ± 0.16 c |
3.6. Free Mineral Changes
3.7. Free Volatile Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tso, R.; Forde, C.G. Unintended consequences: Nutritional impact and potential pitfalls of switching from animal- to plant-based foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Pilar Vaquero, M. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ekperigin, M.M.; Akindahunsi, A.A. Coagulants modulate the antioxidant properties & hypocholesterolemic effect of tofu (curdled soymilk). Nutr. Health 2007, 18, 369–381. [Google Scholar] [PubMed]
- Chua, J.Y.; Lu, Y.; Liu, S.Q. Evaluation of five commercial non-Saccharomyces yeasts in fermentation of soy (tofu) whey into an alcoholic beverage. Food Microbiol. 2018, 76, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.Y.; Liu, S.Q. Soy whey: More than just wastewater from tofu and soy protein isolate industry. Trends Food Sci. Technol. 2019, 91, 24–32. [Google Scholar] [CrossRef]
- Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M. Use of kombucha consortium to transform soy whey into a novel functional beverage. J. Funct. Foods 2019, 52, 81–89. [Google Scholar] [CrossRef]
- Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. LWT 2019, 113, 108258. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The safe and effective use of plant-based diets with guidelines for health professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef]
- Lee, J.-H.; O’Sullivan, D.J. Genomic Insights into Bifidobacteria. Microbiol. Mol. Biol. Rev. 2010, 74, 378–416. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y.; Morishita, T.; Mutai, M. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 1985, 49, 13–19. [Google Scholar]
- Moore, S.J.; Warren, M.J. The anaerobic biosynthesis of vitamin B12. Biochem. Soc. Trans. 2012, 40, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rocha, C.G.; Gronenberg, L.S.; Mack, M.; Commichau, F.M.; Genee, H.J. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr. Opin. Biotechnol. 2019, 56, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. Review article: Bifidobacteria as probiotic agents—Physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 2005, 22, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Meance, S.; Cayuela, C.; Turchet, P.; Raimondi, A.; Lucas, C.; Antoine, J.M. A fermented milk with a Bifidobacterium probiotic strain DN-173 010 shortened oro-fecal gut transit time in elderly. Microb. Ecol. Health Dis. 2001, 13, 217–222. [Google Scholar] [CrossRef]
- Mättö, J.; Alakomi, H.L.; Vaari, A.; Virkajärvi, I.; Saarela, M. Influence of processing conditions on Bifidobacterium animalis subsp. lactis functionality with a special focus on acid tolerance and factors affecting it. Int. Dairy J. 2006, 16, 1029–1037. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Tindjau, R.; Chua, J.Y.; Liu, S.Q. Growth and metabolic behavior of probiotic Bifidobacterium longum subsp. longum in minimally supplemented soy (tofu) whey. Future Foods 2023, 8, 100272. [Google Scholar] [CrossRef]
- Rozada, R.; Vázquez, J.A.; Charalampopoulos, D.; Thomas, K.; Pandiella, S.S. Effect of storage temperature and media composition on the survivability of Bifidobacterium breve NCIMB 702257 in a malt hydrolisate. Int. J. Food Microbiol. 2009, 133, 14–21. [Google Scholar] [CrossRef]
- Schöpping, M.; Gaspar, P.; Neves, A.R.; Franzén, C.J.; Zeidan, A.A. Identifying the essential nutritional requirements of the probiotic bacteria Bifidobacterium animalis and Bifidobacterium longum through genome-scale modeling. npj Syst. Biol. Appl. 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Daneshi, M.; Ehsani, M.R.; Razavi, S.H.; Labbafi, M. Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electron. J. Biotechnol. 2013, 16, 5. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Fukiya, S.; Suzuki, A.; Matsumoto, N.; Matsuo, M.; Yokota, A. Methionine utilization by bifidobacteria: Possible existence of a reverse transsulfuration pathway. Biosci. Microbiota Food Health 2021, 40, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.; Duranti, S.; Milani, C.; Mancabelli, L.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D.; et al. Exploring amino acid auxotrophy in Bifidobacterium bifidum PRL2010. Front. Microbiol. 2015, 6, 1331. [Google Scholar] [CrossRef] [PubMed]
- Ejby, M.; Fredslund, F.; Andersen, J.M.; Žagar, A.V.; Henriksen, J.R.; Andersen, T.L.; Svensson, B.; Slotboom, D.J.; Hachem, M.A. An atp binding cassette transporter mediates the uptake of α-(1,6)-linked dietary oligosaccharides in bifidobacterium and correlates with competitive growth on these substrates. J. Biol. Chem. 2016, 291, 20220–20231. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.R.; Youn, S.Y.; Ji, G.E.; Park, M.S. Production of α- and β-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 2014, 24, 675–682. [Google Scholar] [CrossRef]
- Andersen, J.M.; Barrangou, R.; Hachem, M.A.; Lahtinen, S.J.; Goh, Y.J.; Svensson, B.; Klaenhammer, T.R. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genom. 2013, 14, 312. [Google Scholar] [CrossRef]
- Van Der Meulen, R.; Adriany, T.; Verbrugghe, K.; De Vuyst, L. Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl. Environ. Microbiol. 2006, 72, 5204–5210. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef]
- Usta-Gorgun, B.; Yilmaz-Ersan, L. Short-chain fatty acids production by Bifidobacterium species in the presence of salep. Electron. J. Biotechnol. 2020, 47, 29–35. [Google Scholar] [CrossRef]
- Engevik, M.A.; Danhof, H.A.; Hall, A.; Engevik, K.A.; Horvath, T.D.; Haidacher, S.J.; Hoch, K.M.; Endres, B.T.; Bajaj, M.; Garey, K.W.; et al. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol. 2021, 21, 154. [Google Scholar] [CrossRef] [PubMed]
- Biavati, B.; Mattarelli, P. Bifidobacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–57. [Google Scholar]
- Kamaly, K.M. Bifidobacteria fermentation of soybean milk. Food Res. Int. 1997, 30, 675–682. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Ho, C.T.; Pan, M.H. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J. Funct. Foods. 2020, 74, 104164. [Google Scholar] [CrossRef]
- Pasqualetti, V.; Locato, V.; Fanali, C.; Mulinacci, N.; Cimini, S.; Morgia, A.M.; Pasqua, G.; De Gara, L. Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts. Antioxidants 2021, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M.; Ścibisz, I. Propionibacterium spp.—Source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 2018, 102, 515–538. [Google Scholar] [CrossRef] [PubMed]
- Pajarillo, E.A.B.; Lee, E.; Kang, D.K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim. Nutr. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Andrei, A.; Öztürk, Y.; Khalfaoui-Hassani, B.; Rauch, J.; Marckmann, D.; Trasnea, P.I.; Daldal, F.; Koch, H.-G. Cu homeostasis in bacteria: The ins and outs. Membranes 2020, 10, 242. [Google Scholar] [CrossRef]
- Chamlagain, B.; Sugito, T.A.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Varmanen, P.; Piironen, V. In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii. Food Sci. Nutr. 2018, 6, 67–76. [Google Scholar] [CrossRef]
- Richardson, A.J.; McKain, N.; Wallace, R.J. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol. 2013, 13, 6. [Google Scholar] [CrossRef]
- Martin, F.; Cachon, R.; Pernin, K.; De Coninck, J.; Gervais, P.; Guichard, E.; Cayot, N. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. J. Dairy Sci. 2011, 94, 614–622. [Google Scholar] [CrossRef]
- Le Bars, D.; Yvon, M. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. J. Appl. Microbiol. 2008, 104, 171–177. [Google Scholar] [CrossRef]
- Elsden, S.R.; Hilton, M.G. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch. Microbiol. 1978, 117, 165–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tindjau, R.; Chua, J.-Y.; Liu, S.-Q. Growth, Substrate, and Metabolite Changes of Probiotic Bifidobacterium animalis subsp. lactis in Soy (Tofu) Whey. Fermentation 2023, 9, 1024. https://doi.org/10.3390/fermentation9121024
Tindjau R, Chua J-Y, Liu S-Q. Growth, Substrate, and Metabolite Changes of Probiotic Bifidobacterium animalis subsp. lactis in Soy (Tofu) Whey. Fermentation. 2023; 9(12):1024. https://doi.org/10.3390/fermentation9121024
Chicago/Turabian StyleTindjau, Ricco, Jian-Yong Chua, and Shao-Quan Liu. 2023. "Growth, Substrate, and Metabolite Changes of Probiotic Bifidobacterium animalis subsp. lactis in Soy (Tofu) Whey" Fermentation 9, no. 12: 1024. https://doi.org/10.3390/fermentation9121024
APA StyleTindjau, R., Chua, J. -Y., & Liu, S. -Q. (2023). Growth, Substrate, and Metabolite Changes of Probiotic Bifidobacterium animalis subsp. lactis in Soy (Tofu) Whey. Fermentation, 9(12), 1024. https://doi.org/10.3390/fermentation9121024