A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid
Abstract
:1. Introduction
2. Formulations and Theories
2.1. Mixed Finite Element Formulations
2.2. Stability Analysis
2.3. Kernel Functions
- is a continuous function, with for ;
- For all r, ;
- For all r, ; and
- For all r, , where C is a numerical constant.
3. Compressible Fluid Model for General Grids
4. Matrix-Free Newton–Krylov Iteration
4.1. Matrix Operation Specifics
4.2. Matrix-Free Newton–Krylov Iteration
5. Results and Verifications
6. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belytschko, T. Fluid-structure interaction. Comput. Struct. 1980, 12, 459–469. [Google Scholar] [CrossRef]
- Liu, W.; Belytschko, T.; Chang, H. An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials. Comput. Methods Appl. Mech. Eng. 1986, 58, 227–245. [Google Scholar] [CrossRef]
- Shyy, W.; Udaykumar, H.S.; Rao, M.M.; Smith, R.W. Computational Fluid Dynamics with Moving Boundaries; Taylor & Francis: London, UK, 1996. [Google Scholar]
- Wang, X.S. Fundamentals of Fluid-Solid Interactions-Analytical and Computational Approaches; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Bathe, K.J.; Zhang, H.; Wang, M.H. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput. Struct. 1995, 56, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Bathe, K.J.; Zhang, H. Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 2004, 60, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Tornberg, A.; Shelley, M. Simulating the dynamics and interactions of flexible fibers in stokes flows. J. Comput. Phys. 2004, 196, 8–40. [Google Scholar] [CrossRef]
- Zhang, J.; Childress, S.; Libchaber, A.; Shelley, M. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 2000, 408, 835–838. [Google Scholar] [CrossRef]
- Huerta, A.; Liu, W.K. Viscous flow with large free surface motion. Comput. Methods Appl. Mech. Eng. 1988, 69, 277–324. [Google Scholar] [CrossRef] [Green Version]
- Tezduyar, T. Stabilized finite element formulations for incompressible-flow computations. Adv. Appl. Mech. 1992, 28, 1–44. [Google Scholar]
- Tezduyar, T. Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comput. Methods Eng. 2001, 8, 83–130. [Google Scholar] [CrossRef]
- Wall, W.A.; Schott, B.; Ager, C. A monolithic approach to fluid-structure interaction based on a hybrid eulerian-ALE fluid domain decomposition involving cut elements. Int. J. Numer. Methods Eng. 2019, 119, 208–237. [Google Scholar]
- Zhang, L.; Wagner, G.J.; Liu, W.K. Modeling and simulation of fluid structure interaction by meshfree and FEM. Commun. Numer. Methods Eng. 2003, 19, 615–621. [Google Scholar] [CrossRef]
- Oshe, S.J.; Fedki, R.P. Level Set Methods and Dynamic Implicit Surfaces; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Sethian, J.A. Level Set Methods and Fast Marching Methods; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- LeVeque, R.; Li, Z. Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 1997, 18, 709–735. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; LeVeque, R. The immersed interface methods for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Sci. Comput. 1994, 31, 1019–1044. [Google Scholar]
- Glimm, J.; Grove, J.W.; Li, X.L.; Tan, D.C. Robust computational algorithms for dynamic interface tracking in three dimensions. SIAM J. Sci. Comput. 2000, 21, 2240–2256. [Google Scholar] [CrossRef]
- Li, X.L.; Jin, B.X.; Glimm, J. Numerical study for the three-dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation. J. Comput. Phys. 1996, 126, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Tryggvason, G. Numerical simulations of the Rayleigh-Taylor instability. J. Comput. Phys. 1988, 75, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Farhat, C.; Geuzaine, P.; Grandmont, C. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 2001, 174, 669–694. [Google Scholar] [CrossRef]
- Hughes, T.; Liu, W.K.; Zimmerman, T.K. Lagrangian-Eulerian finite element formulations for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 1981, 29, 329–349. [Google Scholar] [CrossRef]
- Kamakoti, R.; Shyy, W. Fluid-structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 2004, 40, 535–558. [Google Scholar] [CrossRef]
- Lian, Y.; Shyy, W. Numerical simulations of membrane wing aerodynamics for micro air vehicle applications. J. Aircr. 2005, 42, 865–873. [Google Scholar] [CrossRef]
- Shyy, W.; Berg, M.; Ljungqvist, D. Flapping and flexible wings for biological and micro air vehicles. Prog. Aerosp. Sci. 1999, 35, 455–505. [Google Scholar] [CrossRef]
- Chessa, J.; Belytschko, T. The extended finite element method for two-phase fluids. J. Appl. Mech. 2003, 70, 10–17. [Google Scholar] [CrossRef]
- Wagner, G.; Moës, N.; Liu, W.K.; Belytschko, T. The extended finite element method for rigid particles in stokes flow. Int. J. Numer. Methods Eng. 2001, 51, 293–313. [Google Scholar] [CrossRef]
- Glowinski, R.; Pan, T.; Hesla, T.I.; Joseph, D.D.; Périaux, J. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 2001, 169, 363–426. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, Y.; Wu, T. Model studies of fluid-structure interaction problems. Comput. Model. Eng. Sci. 2019, 119, 5–34. [Google Scholar]
- McQueen, D.; Peskin, C. Computer-assisted design of butterfly bileaflet valves for the mitral position. Scand. J. Thor. Cardiovasc. Surg. 1985, 19, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Peskin, C. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [Google Scholar] [CrossRef]
- Peskin, C. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef] [Green Version]
- Beyer, R. A computational model of the cochlea using the immersed boundary method. J. Comput. Phys. 1992, 98, 145–162. [Google Scholar] [CrossRef]
- Fauci, L.; Peskin, C. A computational model of aquatic animal locomotion. J. Comput. Phys. 1988, 77, 85–108. [Google Scholar] [CrossRef]
- Stockie, J.M.; Wetton, B.R. Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys. 1999, 154, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Dillon, R.; Fauci, L.; Fogelson, A.; Gaver, D., III. Modeling biofilm processes using the immersed boundary method. J. Comput. Phys. 1996, 129, 57–73. [Google Scholar] [CrossRef]
- van Loon, R.; Anderson, P.D.; van de Vosse, F.N.; Sherwin, S.J. Comparison of various fluid-structure interaction methods for deformable bodies. Comput. Struct. 2007, 85, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z. A DLM/FD method for fluid/flexible-body interactions. J. Comput. Phys. 2005, 207, 1–27. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.T.; Liu, W.K. On computational issues of immersed finite element methods. J. Comput. Phys. 2009, 228, 2535–2551. [Google Scholar] [CrossRef]
- Sulsky, D.; Kaul, A. Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 2004, 193, 1137–1170. [Google Scholar] [CrossRef]
- Lim, S.; Ferent, A.; Wang, X.; Peskin, C. Dynamics of a closed rod with twist and bend in fluid. SIAM J. Sci. Comput. 2008, 31, 273–302. [Google Scholar] [CrossRef]
- Gay, M.; Zhang, L.T.; Liu, W.K. Stent modeling using immersed finite element method. Comput. Methods Appl. Mech. Eng. 2005, 195, 4358–4370. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Chen, X.; et al. Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 2006, 195, 1722–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Jun, S.; Zhang, Y.F. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 1995, 20, 1081–1106. [Google Scholar] [CrossRef]
- Boffi, D.; Gastaldi, L. A finite element approach for the immersed boundary method. Comput. Struct. 2003, 81, 491–501. [Google Scholar] [CrossRef]
- Mori, Y.; Peskin, C. Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 2008, 197, 2049–2067. [Google Scholar] [CrossRef]
- Newren, E.; Fogelson, A.L.; Guy, R.D.; Kirby, R.M. Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 2007, 222, 702–719. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.K.; Belytschko, T.; Patankar, N.; To, A.C.; Kopacz, A.; Chung, J.H. Immersed electrokinetic finite element method. Int. J. Numer. Methods Eng. 2007, 71, 379–405. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Wang, X.; Liu, W.K. Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics. Int. J. Numer. Methods Fluids 2004, 46, 1237–1252. [Google Scholar] [CrossRef]
- Fogelson, A.; Wang, X.; Liu, W.K. Special issue: Immersed boundary method and its extensions—Preface. Comput. Methods Appl. Mech. Eng. 2008, 197, 25–28. [Google Scholar]
- Liu, W.; Kim, D.W.; Tang, S. Mathematical foundations of the immersed finite element method. Comput. Mech. 2007, 39, 211–222. [Google Scholar] [CrossRef]
- Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. From immersed boundary method to immersed continuum method. Int. J. Multiscale Comput. Eng. 2006, 4, 127–145. [Google Scholar] [CrossRef]
- Wang, X. An iterative matrix-free method in implicit immersed boundary/continuum methods. Comput. Struct. 2007, 85, 739–748. [Google Scholar] [CrossRef]
- Sulsky, D.; Brackbill, J.U. A numerical method for suspension flow. J. Comput. Phys. 1991, 96, 339–368. [Google Scholar] [CrossRef]
- Boffi, D.; Gastaldi, L.; Heltai, L. On the CFL condition for the finite element immersed boundary method. Comput. Struct. 2007, 85, 775–783. [Google Scholar] [CrossRef]
- Boffi, D.; Gastaldi, L.; Heltai, L.; Peskin, C. On the hyperelastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 2008, 197, 2210–2231. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.K. Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 2004, 193, 1305–1321. [Google Scholar] [CrossRef]
- Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W.K. Immersed finite element method. Comput. Methods Appl. Mech. Eng. 2004, 193, 2051–2067. [Google Scholar] [CrossRef]
- Shu, C.W. Essential non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 2020, 1–60. [Google Scholar]
- Wang, X.; Gordnier, R. A combination of immersed methods and compact scheme based computational fluid dynamics for fluid-structure interactions. In Air Force ASEE Summer Faculty Fellow Report; Midwestern State University: Wichita Falls, TX, USA, 2009. [Google Scholar]
- Wang, X.; Bathe, K.J. Displacement/pressure based finite element formulations for acoustic fluid-structure interaction problems. Int. J. Numer. Methods Eng. 1997, 40, 2001–2017. [Google Scholar] [CrossRef]
- Wang, X.; Bathe, K.J. On mixed elements for acoustic fluid-structure interactions. Math. Model. Methods Appl. Sci. 1997, 7, 329–343. [Google Scholar] [CrossRef]
- Bao, W.; Wang, X.; Bathe, K.J. On the Inf-Sup condition of mixed finite element formulations for acoustic fluids. Math. Model. Methods Appl. Sci. 2001, 11, 883–901. [Google Scholar] [CrossRef] [Green Version]
- Bathe, K. Finite Element Procedures; Prentice Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Li, S.; Liu, W.K. Reproducing kernel hierarchical partition of unity part I: Formulation and theory. Int. J. Numer. Methods Eng. 1999, 45, 251–288. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Chang, C.T.; Belytschko, T. Advances in multiple scale kernel particle methods. Comput. Mech. 1996, 18, 73–111. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Uras, R.A.; Chang, C.T. Generalized multiple scale reproducing kernel particle methods. Comput. Methods Appl. Mech. Eng. 1996, 139, 91–157. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.J. Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 1995, 21, 901–932. [Google Scholar] [CrossRef]
- Wang, X. On the discretized delta function and force calculation in the immersed boundary method. In Computational Fluid and Solid Mechanics; Bathe, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 2164–2169. [Google Scholar]
- Griffith, B.; Patankar, N.A. Immersed methods for fluid-structure interaction. Annu. Rev. Fluid Mech. 2020, 52, 421–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, L. Immersed Methods for Coupled Systems of Continua; World Scientific Publishing Co.: Singapore, 2021. [Google Scholar]
- Pan, T. Private Communications. 2021. Available online: http://www.math.uh.edu/ (accessed on 4 May 2021).
- Vincent, S.; Caltagirone, J.P. A monolithic approach of fluid–structure interaction by discrete mechanics. Fluids 2021, 6, 95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid. Fluids 2021, 6, 273. https://doi.org/10.3390/fluids6080273
Wang S. A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid. Fluids. 2021; 6(8):273. https://doi.org/10.3390/fluids6080273
Chicago/Turabian StyleWang, Sheldon. 2021. "A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid" Fluids 6, no. 8: 273. https://doi.org/10.3390/fluids6080273
APA StyleWang, S. (2021). A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid. Fluids, 6(8), 273. https://doi.org/10.3390/fluids6080273