# A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Fluid–Structure Interaction Problems

## 3. Approaches to Fluid–Structure Interaction Problems

#### 3.1. Monolithic Approach

#### 3.2. Segregated Approach

- Explicit algorithms: after time discretization, the coupling conditions are treated explicitly at every time-step. These algorithms, also known as weakly or loosely coupled algorithms [39], are successfully applied in aerodynamics applications (see [40,41]), but some studies (see [38,42,43]) showed that they are unstable under some physical and geometrical conditions due to the added mass effect, as we previously mentioned.
- Implicit algorithms: in these algorithms, also known as strongly coupled algorithms, the coupling conditions are treated implicitly at every time-step; see for example [44,45]. This implicit coupling represents a way to circumvent the instability problems due to the added mass effect; nevertheless, an implicit treatment of the coupling conditions leads to algorithms that are more expensive in terms of computational time.
- Semi-implicit algorithms: in these algorithms (see [46,47,48]), the continuity of the displacement is treated explicitly whereas the other coupling conditions are treated implicitly. This alternative represents a tradeoff between the computational cost of the algorithm and its stability in relation to the physical and geometrical properties of the problem. In Section 6.4, we present a reduced order method that is based on this kind of partitioned approach.

## 4. Monolithic Approach

#### 4.1. Time Discretization

#### 4.2. Space Discretization

#### Coupling Conditions through Lagrange Multipliers

#### 4.3. Lifting Function and Supremizer Enrichment

#### 4.4. Reduced Basis Generation

#### 4.5. Online Phase

## 5. Results

## 6. Partitioned Approach

#### 6.1. Time Discretization

- Extrapolation of the mesh displacement: find ${\mathit{d}}_{f}^{i+1}:{\Omega}_{f}\mapsto {\mathbb{R}}^{2}$ such that$$\left\{\begin{array}{c}-\Delta {\mathit{d}}_{f}^{i+1}=0\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{f},\hfill \\ {\mathit{d}}_{f}^{i+1}={\mathit{d}}_{s}^{i}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI}.\hfill \end{array}\right.$$
- Fluid explicit step: find ${\mathit{u}}_{f}^{i+1}:{\Omega}_{f}\mapsto {\mathbb{R}}^{2}$ such that$$\left\{\begin{array}{c}J{\rho}_{f}\left(\frac{{\mathit{u}}_{f}^{i+1}-{\mathit{u}}_{f}^{i}}{\Delta T}+\nabla {\mathit{u}}_{f}^{i+1}{F}^{-1}({\mathit{u}}_{f}^{i+1}-{D}_{t}{\mathit{d}}_{f}^{i+1})\right)-\hfill \\ -{\rho}_{f}{\nu}_{f}\mathrm{div}\left(J\epsilon \left({\mathit{u}}_{f}^{i+1}\right){F}^{-T}\right)+J{F}^{-T}\nabla {p}_{f}^{i}=J{\mathit{b}}_{f}\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{f},\hfill \\ \\ {\mathit{u}}_{f}^{i+1}={D}_{t}{\mathit{d}}_{f}^{i+1}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI},\hfill \end{array}\right.$$$$\epsilon \left({\mathit{u}}_{f}^{i+1}\right):=\nabla {\mathit{u}}_{f}^{i+1}{F}^{-1}+{F}^{-T}{\nabla}^{T}{\mathit{u}}_{f}^{i+1}.$$
- Implicit step:
- Fluid projection substep (pressure Poisson formulation): find ${p}_{f}^{i+1}:{\Omega}_{f}\mapsto {\mathbb{R}}^{2}$ such that$$\left\{\begin{array}{c}-\mathrm{div}(J{F}^{-1}{F}^{-T}\nabla {p}_{f}^{i+1})=-\frac{{\rho}_{f}}{\Delta t}\mathrm{div}\left(J{F}^{-1}{\mathit{u}}_{f}^{i+1}\right)\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{f},\hfill \\ -{F}^{-T}\nabla {p}_{f}^{i+1}\xb7J{F}^{-T}{\mathit{n}}_{f}={\rho}_{f}{D}_{tt}{\mathit{d}}_{s}^{i+1}\xb7J{F}^{-T}{\mathit{n}}_{f}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI},\hfill \end{array}\right.$$$${p}_{f}^{i+1}=\overline{p}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{in},$$
- Structure projection substep: find ${\mathit{d}}_{s}^{i+1}:{\Omega}_{s}\mapsto {\mathbb{R}}^{2}$ such that$$\left\{\begin{array}{c}{\rho}_{s}{D}_{tt}{\mathit{d}}_{s}^{i+1}-\mathrm{div}P\left({\mathit{d}}_{s}^{i+1}\right)={\mathit{b}}_{s}\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{s},\hfill \\ -P\left({\mathit{d}}_{s}^{i+1}\right){\mathit{n}}_{s}=J{\sigma}_{f}({\mathit{u}}_{f}^{i+1},{p}_{f}^{i+1}){F}^{-T}{\mathit{n}}_{f}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI},\hfill \end{array}\right.$$

- The original Navier–Stokes problem was divided into two subproblems, namely the fluid explicit step and the fluid projection step. In the explicit step, we take care of the momentum balance of the fluid problem, whereas in the projection step, we take care of the divergence free condition: this subdivision is a peculiarity of the Chorin–Temam projection scheme; we refer the interested reader to [57,58]. The advantage of adopting such a numerical scheme for the fluid problem is given by the fact that, in this case, we can also use pairs of discrete spaces (${V}_{h}$ and ${Q}_{h}$) for the fluid velocity and pressure that do not necessarily satisfy the inf–sup condition; this represents a great advantage for the forthcoming online phase of the method, since we are able to obtain a stable approximation of the fluid pressure also without employing the supremizer enrichment technique, unlike in the monolithic approach.
- The treatment of the boundary conditions (in our specific case, the inlet boundary condition) is a delicate aspect of partitioned schemes. If the original problem of interest is provided with a boundary condition for the fluid Cauchy stress tensor ${\sigma}^{f}({\mathit{u}}_{f},{p}_{f}){\mathit{n}}_{in}={\mathit{g}}_{in}$, where ${\mathit{n}}_{in}$ is the normal outgoing the inlet boundary, then during the Chorin–Temam projection scheme, this condition can be splitted into two: a natural condition for the fluid velocity explicit step $\epsilon \left({\mathit{u}}_{f}\right){\mathit{n}}_{in}=\mathbf{0}$ and a Dirichlet condition for the pressure ${p}_{f}{\mathit{n}}_{in}={\mathit{g}}_{in}$ (see for example [58]). However, in our particular toy problem, we have a Dirichlet inlet condition for the velocity: we therefore need a Dirichlet boundary condition also for the pressure in order to obtain uniqueness of solution of the pressure Poisson problem. In this case, we have no specific indication of what value for the pressure to choose at the inlet boundary: for our test case, we decided to compute the inlet pressure value by computing the quantity ${\sigma}^{f}({\mathit{u}}_{f},{p}_{f}){\mathit{n}}_{in}$ on the inlet boundary and use the fact that, there, we have ${\mathit{u}}_{f}={\mathit{u}}_{in}$.
- In the projection step (20), we chose a pressure Poisson formulation; it is possible to use a Darcy formulation instead: find ${p}_{f}^{i+1}$ and ${\tilde{\mathit{u}}}_{f}^{i+1}$ such that$$\left\{\begin{array}{c}{\rho}_{f}J\frac{{\tilde{\mathit{u}}}_{f}^{i+1}-{u}_{f}^{i+1}}{\Delta T}+J{F}^{-T}\nabla {p}_{f}^{i+1}=0\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{f},\hfill \\ \mathrm{div}\left(J{F}^{-1}{\tilde{\mathit{u}}}_{f}^{i+1}\right)=0\phantom{\rule{1.em}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}{\Omega}_{f}.\hfill \end{array}\right.$$However, in view of an efficient model order reduction, we chose to employ a Poisson formulation, since the Darcy formulation requires the introduction of an additional unknown ${\tilde{\mathit{u}}}_{f}$, which translates in a larger system, comprised of both velocity and pressure, at the implicit step.

#### 6.2. Space Discretization

- Extrapolation of the mesh displacement: find ${\mathit{d}}_{f,h}^{i+1}\in {E}_{h}^{f}$ such that $\forall {\mathit{e}}_{f,h}\in {E}_{h}^{f}$:$$\left\{\begin{array}{c}{(\nabla {\mathit{d}}_{f,h}^{i+1},\nabla {\mathit{e}}_{f,h})}_{{\Omega}_{f}}=0\hfill \\ {\mathit{d}}_{f,h}^{i+1}={\mathit{d}}_{s,h}^{i}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI}.\hfill \end{array}\right.$$
- Fluid explicit step: find ${\mathit{u}}_{f,h}^{i+1}\in {V}_{h}^{f}$ such that $\forall {\mathit{v}}_{f,h}\in {V}_{h}^{0}$:$$\left\{\begin{array}{c}\begin{array}{cc}\hfill \phantom{\rule{1.em}{0ex}}& {\rho}_{f}{(J\left(\frac{{\mathit{u}}_{f,h}^{i+1}-{\mathit{u}}_{f,h}^{i}}{\Delta T}\right),{\mathit{v}}_{f,h})}_{{\Omega}_{f}}+{\rho}_{f}{(J(\nabla {\mathit{u}}_{f,h}^{i+1}{F}^{-1}({\mathit{u}}_{f,h}^{i+1}-{D}_{t}{\mathit{d}}_{f,h}^{i+1})),{\mathit{v}}_{f,h})}_{{\Omega}_{f}}\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& +{\rho}_{f}{\nu}_{f}{(J\epsilon \left({\mathit{u}}_{f,h}^{i+1}\right){F}^{-T},\nabla {\mathit{v}}_{f,h})}_{{\Omega}_{f}}+{(J{F}^{-T}\nabla {p}_{f,h}^{i},{\mathit{v}}_{f,h})}_{{\Omega}_{f}}=(J{\mathit{b}}_{f},{\mathit{v}}_{f,h})\hfill \end{array}\hfill \\ {\mathit{u}}_{f,h}^{i+1}={D}_{t}{\mathit{d}}_{f,h}^{i+1}\phantom{\rule{1.em}{0ex}}\mathrm{on}\phantom{\rule{4.pt}{0ex}}{\Gamma}_{FSI},\hfill \end{array}\right.$$
- Implicit step: for any $j=0,\dots $ until convergence:
- Fluid projection substep (pressure Poisson formulation): find ${p}_{f,h}^{i+1,j+1}\in {Q}_{h}$ such that $\forall {q}_{f,h}\in {Q}_{h}^{0}$:$$\begin{array}{cc}& -\frac{{\rho}_{f}}{\Delta T}{(\mathrm{div}\left(J{F}^{-1}{\mathit{u}}_{f,h}^{i+1}\right),{q}_{f,h})}_{{\Omega}_{f}}-{\rho}_{f}{(\left({D}_{tt}{\mathit{d}}_{s,h}^{i+1,j}\right),J{F}^{-T}{\mathit{n}}_{f}{q}_{f,h})}_{{\Gamma}_{FSI}}+\hfill \\ & +{\alpha}_{ROB}{({p}_{f,h}^{i+1,j},{q}_{f,h})}_{{\Gamma}_{FSI}}={\alpha}_{ROB}{({p}_{f,h}^{i+1,j+1},{q}_{f,h})}_{{\Gamma}_{FSI}}+{(J{F}^{-T}\nabla {p}_{f,h}^{i+1,j+1},{F}^{-T}\nabla {q}_{f,h})}_{{\Omega}_{f}}.\hfill \end{array}$$
- Structure projection substep: find ${\mathit{d}}_{s,h}^{i+1,j+1}\in {E}_{h}^{s}$ such that $\forall {\mathit{e}}_{s,h}\in {E}_{h}^{s}$:$${\rho}_{s}{({D}_{tt}{\mathit{d}}_{s,h}^{i+1,j+1},{\mathit{e}}_{s,h})}_{{\Omega}_{f}}+{(P\left({\mathit{d}}_{s,h}^{i+1,j+1}\right),\nabla {\mathit{e}}_{s,h})}_{{\Omega}_{s}}=-{(J{\sigma}_{f}({\mathit{u}}_{f,h}^{i+1},{p}_{f,h}^{i+1,j+1}){F}^{-T}{\mathit{n}}_{f},{\mathit{e}}_{s,h})}_{{\Gamma}_{FSI}}+{({\mathit{b}}_{s},{\mathit{e}}_{s,h})}_{{\Omega}_{s}}$$

#### 6.3. Reduced Basis Generation

#### 6.3.1. Change of Variable for the Fluid Velocity

#### 6.3.2. Harmonic Extension of the Fluid Displacement

#### 6.4. Online Computational Phase

- Fluid projection substep: find ${p}_{f,N}^{0,i+1,j+1}\in {Q}_{N}^{0}$ such that $\forall {q}_{f,N}\in {Q}_{N}^{0}$:$$\begin{array}{cc}\hfill \phantom{\rule{1.em}{0ex}}& -\frac{{\rho}_{f}}{\Delta T}{(\mathrm{div}\left(J{F}^{-1}{\mathit{u}}_{f,N}^{i+1}\right),{q}_{f,N})}_{{\Omega}_{f}}-{\rho}_{f}{(\left({D}_{tt}{\mathit{d}}_{s,N}^{i+1,j}\right),J{F}^{-T}{\mathit{n}}_{f}{q}_{f,N})}_{{\Gamma}_{FSI}}\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& +{\alpha}_{ROB}{({p}_{f,N}^{i+1,j},{q}_{f,N})}_{{\Gamma}_{FSI}}-{\alpha}_{ROB}{({\ell}_{p}^{i+1},{q}_{f,N})}_{{\Gamma}_{FSI}}\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& -J{F}^{-T}{(\nabla {\ell}_{p}^{i+1},{F}^{-T}\nabla {q}_{f,N})}_{{\Omega}_{f}}={\alpha}_{ROB}{({p}_{f,N}^{i+1,j+1},{q}_{f,N})}_{{\Gamma}_{FSI}}\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& +{(J{F}^{-T}\nabla {p}_{f,N}^{i+1,j+1},{F}^{-T}\nabla {q}_{f,N})}_{{\Omega}_{f}};\hfill \end{array}$$
- Structure projection substep: find ${\mathit{d}}_{s,N}^{i+1,j+1}\in {E}_{N}^{s}$ such that $\forall {\mathit{e}}_{s,N}\in {E}_{N}^{s}$:$${\rho}_{s}{({D}_{tt}{\mathit{d}}_{s,N}^{i+1,j+1},{\mathit{e}}_{s,N})}_{{\Omega}_{s}}+{(P\left({\mathit{d}}_{s,N}^{i+1,j+1}\right),\nabla {\mathit{e}}_{s,N})}_{{\Omega}_{s}}=-{(J{\sigma}_{f}({\mathit{u}}_{f,N}^{i+1},{p}_{f,N}^{i+1,j+1}){F}^{-T}{\mathit{n}}_{f},{\mathit{e}}_{s,N})}_{{\Gamma}_{FSI}}+{({\mathit{b}}_{N}^{s},{\mathit{e}}_{s,N})}_{{\Omega}_{s}},$$

## 7. Results

## 8. Discussion

## 9. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; Springer Briefs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Haasdonk, B. Reduced Basis Methods for Parametrized PDEs—A Tutorial Introduction for Stationary and Instationary Problems. In Model Reduction and Approximation: Theory and Algorithms; Benner, P., Cohen, A., Ohlberger, M., Willcox, K., Eds.; Computational Science and Engineering: Philadelphia, Pennsylvania, 2017; Chapter 2; pp. 65–136. [Google Scholar]
- Rozza, G.; Huynh, D.B.P.; Patera, A.T. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods Eng.
**2008**, 15, 229–275. [Google Scholar] [CrossRef][Green Version] - Bertagna, L.; Veneziani, A. A model reduction approach for the variational estimation of vascular compliance by solving an inverse Fluid–Structure Interaction problem. Inverse Probl.
**2014**, 30, 055006. [Google Scholar] [CrossRef] - Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G. Model Order Reduction in Fluid Dynamics: Challenges and perspectives. In Reduced Order Methods for Modeling and Computational Reduction; Quarteroni, A., Rozza, G., Eds.; Springer: Cham, Switzerland, 2014; Volume 9, pp. 235–273. [Google Scholar]
- Haasdonk, B.; Ohlberger, M. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM Math. Model. Numer. Anal.
**2008**, 42, 277–302. [Google Scholar] [CrossRef] - Nguyen, N.C.; Rozza, G.; Patera, A.T. Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation. Calcolo
**2009**, 46, 157–185. [Google Scholar] [CrossRef][Green Version] - Karatzas, E.; Nonino, M.; Ballarin, F.; Rozza, G. A Reduced Order Cut Finite Element Method for geometrically parametrized steady and unsteady Navier–Stokes. arXiv
**2020**, arXiv:2010.04953. [Google Scholar] - Burman, E.; Claus, S.; Hansbo, P.; Larson, M.; Massing, A. CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng.
**2014**, 104, 472–501. [Google Scholar] [CrossRef][Green Version] - Burman, E.; Hansbo, P. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM: Math. Model. Numer. Anal.
**2014**, 48, 859–874. [Google Scholar] [CrossRef][Green Version] - Ballarin, F.; Rozza, G. POD–Galerkin monolithic reduced order models for parametrized Fluid–Structure Interaction problems. Int. J. Numer. Methods Fluids
**2016**, 82, 1010–1034. [Google Scholar] [CrossRef] - Ballarin, F.; Rozza, G.; Maday, Y. Reduced-order semi-implicit schemes for Fluid–Structure Interaction problems. In Model Reduction of Parametrized Systems; Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 17, pp. 149–167. [Google Scholar]
- Colciago, C.M.; Deparis, S. Reduced Numerical Approximation for Fluid–Structure Interaction problems with applications in haemodynamics. Front. Appl. Math. Stat.
**2018**, 4, 1–18. [Google Scholar] [CrossRef] - Lassila, T.; Quarteroni, A.; Rozza, G. A Reduced Basis Model with Parametric Coupling for Fluid–Structure Interaction Problems. SIAM J. Sci. Comput.
**2012**, 34, 1187–1213. [Google Scholar] [CrossRef][Green Version] - Lieu, T.; Farhat, C.; Lesoinne, M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput. Methods Appl. Mech. Eng.
**2006**, 195, 5730–5742. [Google Scholar] [CrossRef] - Deparis, S.; Forti, D.; Grandperrin, G.; Quarteroni, A. FaCSI: A block parallel preconditioner for fluid–structure interaction in hemodynamics. J. Comput. Phys.
**2016**, 327, 700–718. [Google Scholar] [CrossRef][Green Version] - Nonino, M.; Ballarin, F.; Rozza, G.; Maday, Y. Overcoming slowly decaying Kolmogorov n-width by transport maps: Application to model order reduction of fluid dynamics and Fluid–Structure Interaction problems. arXiv
**2019**, arXiv:1911.06598. [Google Scholar] - Errate, D.; Esteban, M.J.; Maday, Y. Couplage fluid–structure. Un modele simplifié en dimension 1. Comptes Rendus Acad. Des Sci.
**1994**, 318, 275–281. [Google Scholar] - Grandmont, C.; Maday, Y. Existence de solutions d’un probléme de couplage fluide-structure bidimensionnel instationnaire. Comptes Rendus Acad. Des Sci.
**1998**, 326, 525–530. [Google Scholar] [CrossRef] - Lombardi, M.; Parolini, N.; Quarteroni, A.; Rozza, G. Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design; Buttazzo, G., Frediani, A., Eds.; Springer: Boston, MA, USA, 2012; Volume 66, pp. 339–377. [Google Scholar]
- Wang, Y.; Quaini, A.; Čanić, S.; Vukicevic, M.; Little, S.H. 3D Experimental and Computational Analysis of Eccentric Mitral Regurgitant Jets in a Mock Imaging Heart Chamber. Cardiovasc. Eng. Technol.
**2017**, 8, 419–438. [Google Scholar] [CrossRef] [PubMed] - Quaini, A. Algorithms for Fluid–Structure Interaction Problems Arising in Hemodynamics. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2009. [Google Scholar]
- Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni; Quarteroni, A.; Rozza, G.; Scrofani, R. Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD–Galerkin method and a vascular shape parametrization. J. Comput. Phys.
**2016**, 315, 609–628. [Google Scholar] [CrossRef] - Quarteroni, A.; Formaggia, L. Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Handb. Numer. Anal.
**2004**, 12, 3–127. [Google Scholar] - Quarteroni, A.; Tuveri, M.; Veneziani, A. Computational vascular fluid dynamics: Problems, models and methods. Comput. Vis. Sci.
**2000**, 2, 163–197. [Google Scholar] [CrossRef] - Maday, Y. Analysis of coupled models for fluid-structure interaction of internal flows. In Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System; Formaggia, L., Quarteroni, A., Veneziani, A., Eds.; Springer: Milan, Italy, 2009; pp. 279–306. [Google Scholar]
- Gerbeau, J.F.; Lombardi, D.; Schenone, E. Reduced order model in cardiac electrophysiology with approximated Lax Pairs. Adv. Comput. Math.
**2015**, 41, 1103–1130. [Google Scholar] [CrossRef][Green Version] - Rabinovitch, J.; Huang, D.Z.; Borker, R.; Avery, P.; Farhat, C.; Derkevorkian, A.; Peterson, L. Towards a Validated FSI Computational Framework for Supersonic Parachute Deployments. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Derkevorkian, A.; Avery, P.; Farhat, C.; Rabinovitch, J.; Peterson, L. Effects of Structural Parameters on the FSI Simulation of Supersonic Parachute Deployments. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Farhat, C.; Lakshminarayan, V.K. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent Fluid–Structure Interaction problems. J. Comput. Phys.
**2014**, 263, 53–70. [Google Scholar] [CrossRef] - Turek, S.; Hron, J. Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow. In Fluid-Structure Interaction; Bungartz, H.J., Schäfer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 371–385. [Google Scholar]
- Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M. Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches. In Fluid Structure Interaction II; Bungartz, H.J., Mehl, M., Schäfer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 413–424. [Google Scholar]
- Richter, T. Fluid–Structure Interactions. Model, Analysis and Finite Element. In Lecture Notes in Computational Science and Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 118. [Google Scholar]
- Gee, M.W.; Küttler, U.; Wall, W.A. Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Methods Eng.
**2011**, 85, 987–1016. [Google Scholar] [CrossRef] - Forti, D.; Bukac, M.; Quaini, A.; Čanić, S.; Deparis, S. A Monolithic Approach to Fluid–Composite Structure Interaction. J. Sci. Comput.
**2017**, 72, 396–421. [Google Scholar] [CrossRef] - Badia, S.; Quaini, A.; Quarteroni, A. Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J. Comput. Phys.
**2009**, 228, 7986–8014. [Google Scholar] [CrossRef] - Wu, Y.; Cai, X.C. A fully implicit domain decomposition based ALE framework for three-dimensional Fluid–Structure Interaction with application in blood flow computation. J. Comput. Phys.
**2014**, 258, 524–537. [Google Scholar] [CrossRef] - Causin, P.; Gerbeau, J.F.; Nobile, F. Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng.
**2005**, 194, 4506–4527. [Google Scholar] [CrossRef][Green Version] - Bukač, M.; Čanić, S.; Glowinski, R.; Tambača, J.; Quaini, A. Fluid–Structure Interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys.
**2013**, 235, 515–541. [Google Scholar] [CrossRef][Green Version] - Farhat, C.; van der Zee, K.G.; Geuzaine, P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng.
**2006**, 195, 1973–2001. [Google Scholar] [CrossRef] - Piperno, S.; Farhat, C. Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems. Rev. Eur. Des Elem. Finis
**2000**, 9, 655–680. [Google Scholar] [CrossRef] - Gerbeau, J.F.; Vidrascu, M. A Quasi-Newton Algorithm Based on a Reduced Model for Fluid–Structure Interaction Problems in Blood Flows. ESAIM Math. Model. Numer. Anal.
**2003**, 37, 631–647. [Google Scholar] [CrossRef][Green Version] - Le Tallec, P.; Mouro, J. Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng.
**2001**, 190, 3039–3067. [Google Scholar] [CrossRef] - Wang, W.Q.; Yan, Y. Strongly coupling of partitioned fluid–solid interaction solvers using reduced-order models. Appl. Math. Model.
**2010**, 34, 3817–3830. [Google Scholar] [CrossRef] - Wang, Y.; Quaini, A.; Čanić, S. A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures. J. Sci. Comput.
**2018**, 76, 481–520. [Google Scholar] [CrossRef] - Badia, S.; Quaini, A.; Quarteroni, A. Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng.
**2008**, 197, 4216–4232. [Google Scholar] [CrossRef][Green Version] - Badia, S.; Quaini, A.; Quarteroni, A. Splitting Methods Based on Algebraic Factorization for Fluid–Structure Interaction. SIAM J. Sci. Comput.
**2008**, 30, 1778–1805. [Google Scholar] [CrossRef] - Basting, S.; Quaini, A.; Čanić, S.; Glowinski, R. Extended ALE Method for Fluid–Structure Interaction problems with large structural displacements. J. Comput. Phys.
**2017**, 331, 312–336. [Google Scholar] [CrossRef][Green Version] - Chabannes, V.; Pena, G.; Christophe, P. High-order fluid-structure interaction in 2D and 3D application to blood flow in artheries. J. Comput. Appl. Math.
**2013**, 246, 1–9. [Google Scholar] [CrossRef] - Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G. Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng.
**2015**, 102, 1136–1161. [Google Scholar] [CrossRef] - Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Brezzi, F.; Bathe, K.J. A discourse on the stability conditions for mixed finite element formulations. Comput. Methods Appl. Mech. Eng.
**1990**, 82, 27–57. [Google Scholar] [CrossRef] - Ali, S.; Ballarin, F.; Rozza, G. Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations. Comput. Math. Appl.
**2020**, 80, 2399–2416. [Google Scholar] [CrossRef][Green Version] - Kunisch, K.; Volkwein, S. Galerkin Proper Orthogonal Decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal.
**2002**, 40, 492–515. [Google Scholar] [CrossRef] - Multiphenics—Easy Prototyping of Multiphysics Problems in FEniCS. 2016. Available online: http://mathlab.sissa.it/multiphenics (accessed on 26 February 2021).
- RBniCS—Reduced Order Modelling in FEniCS. 2015. Available online: http://mathlab.sissa.it/rbnics (accessed on 26 February 2021).
- Guermond, J.L.; Quartapelle, L. On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math.
**1998**, 80, 207–238. [Google Scholar] [CrossRef][Green Version] - Guermond, J.L.; Quartapelle, L. Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM. J. Comput. Phys.
**1997**, 132, 12–33. [Google Scholar] [CrossRef][Green Version] - Fernández, M.A.; Gerbeau, J.F.; Grandmont, C. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng.
**2007**, 69, 794–821. [Google Scholar] [CrossRef][Green Version] - Astorino, M.; Chouly, F.; Fernández, M.A. Robin Based Semi-Implicit Coupling in Fluid–Structure Interaction: Stability Analysis and Numerics. SIAM J. Sci. Comput.
**2010**, 31, 4041–4065. [Google Scholar] [CrossRef][Green Version] - Badia, S.; Nobile, F.; Vergara, C. Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys.
**2008**, 227, 7027–7051. [Google Scholar] [CrossRef] - Fernández, M.A.; Mullaert, J.; Vidrascu, M. Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comput. Methods Appl. Mech. Eng.
**2013**, 267, 566–593. [Google Scholar] [CrossRef][Green Version] - Hijazi, S.; Ali, S.; Stabile, G.; Ballarin, F.; Rozza, G. The Effort of Increasing Reynolds Number in Projection—Based Reduced Order Methods: From Laminar to Turbulent Flows. In Numerical Methods for Flows: FEF 2017 Selected Contributions; van Brummelen, H., Corsini, A., Perotto, S., Rozza, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 245–264. [Google Scholar]
- Ali, S.; Ballarin, F.; Rozza, G. A Reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations. arXiv
**2021**, arXiv:2103.03553. [Google Scholar] - Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G. POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: Vortex shedding around a circular cylinder. Commun. Appl. Ind. Math.
**2017**, 8, 210–236. [Google Scholar] [CrossRef][Green Version] - Girfoglio, M.; Quaini, A.; Rozza, G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Comput. Fluids
**2019**, 187, 27–45. [Google Scholar] [CrossRef][Green Version] - Stabile, G.; Rozza, G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations. Comput. Fluids
**2018**, 173, 273–284. [Google Scholar] [CrossRef][Green Version] - Pasquariello, V.; Hammerl, G.; O¨rley, F.; Hickel, S.; Danowski, C.; Popp, A.; Wall, W.A.; Adams, N.A. A cut-cell finite volume–finite element coupling approach for Fluid–Structure Interaction in compressible flow. J. Comput. Phys.
**2016**, 307, 670–695. [Google Scholar] [CrossRef][Green Version] - Karatzas, E.N.; Ballarin, F.; Rozza, G. Projection-based reduced order models for a cut finite element method in parametrized domains. Comput. Math. Appl.
**2020**, 79, 833–851. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Fluid–structure interaction domains. Time-dependent configuration (

**left**): fluid domain ${\Omega}_{f}\left(t\right)$ (blue) and solid deformed domain ${\Omega}_{s}\left(t\right)$ (red). Reference configuration (

**right**): the inlet boundary ${\widehat{\Gamma}}_{in}$ (magenta), the wall boundaries for the fluid ${\widehat{\Gamma}}_{walls}$ (light blue), and the Neumann (outlet) boundary ${\widehat{\Gamma}}_{N}^{f}$ (orange). The fluid arbitrary reference configuration ${\widehat{\Omega}}_{f}$ is depicted in blue, the solid reference configuration ${\widehat{\Omega}}_{s}$ is depicted in red, and ${\widehat{\Gamma}}_{D}^{s}$ is the solid Dirichlet boundary. The fluid–structure interface in the reference configuration ${\widehat{\Gamma}}_{FSI}$ is highlighted in green.

**Figure 2.**Reference configuration of the benchmark test case. The solid is depicted in red, while the fluid domain is in blue.

**Figure 3.**The outcomes of the monolithic POD: eigenvalue decay (

**a**) and retained energy (

**b**) for the first 100 modes.

**Figure 4.**The first POD modes for the fluid velocity ${u}_{f}$ and for the supremizer s (magnitude).

**Figure 8.**The deformation of the bar at time $t=0.9$ s: the FE solution (

**top left**) and the reduced order solution (

**top right**). Bottom: approximation error $|{d}_{s,h}-{d}_{s,N}|$, represented over the solid reference configuration (undeformed state). ${N}_{{d}_{s}}=21$ basis functions were used for the solid displacement. The deformation was magnified by a factor 5 for visualization purposes.

**Figure 9.**Fluid pressure at time $t=0.9$ s: the FE solution (

**top left**) and the reduced order solution (

**top right**). Bottom: approximation error $|{p}_{f,h}-{p}_{f,N}|$. ${N}_{p}=21$ basis functions were used for the fluid pressure, with the supremizer enrichment technique.

**Figure 10.**Fluid pressure approximation without the implementation of the supremizer enrichment: solution before the code diverges.

**Figure 11.**Fluid velocity at time $t=0.9$ s: the FE solution (

**top left**) and the reduced order solution (

**top right**). Bottom: approximation error $|{u}_{f,h}-{u}_{f,N}|$. ${N}_{u}=42$ basis functions were used for the fluid velocity.

**Figure 12.**Average relative error as a function of the number of basis functions used in the online system.

**Figure 14.**The outcomes of the partitioned POD: eigenvalue decay (

**a**) and energy retained (

**b**) for the first 100 modes.

**Figure 15.**The first three POD modes for the fluid velocity change in variable ${z}_{f}$ (magnitude): notice how, for the partitioned approach, the magnitude of the modes is zero not only on the inlet boundary (thanks to the lifting function) but also on the fluid–structure interface (thanks to the implementation of the change of variable).

**Figure 17.**The first three POD modes for the solid displacement ${d}_{s}$ (

**left column**) and the corresponding mesh displacement modes (

**right column**) obtained with an harmonic extension of the basis functions on the left column.

**Figure 18.**Deformation of the structure: FE solution (

**top left**), reduced order solution (

**top right**), and local approximation error (

**bottom**). The approximation was obtained with ${N}_{{d}_{s}}=13$ basis functions. The deformation was magnified by a factor 10 for visualization purposes.

**Figure 19.**Pressure Poisson recovery: FE solution (

**top left**), reduced order solution (

**top right**), and local approximation error (

**bottom**). The approximation was obtained with ${N}_{{p}_{f}}=13$ basis functions.

**Figure 20.**Fluid velocity: FE solution (

**top left**), reduced order solution (

**top right**), and local approximation error (

**bottom**). The approximation was obtained with ${N}_{{u}_{f}}=13$ basis functions.

**Figure 21.**Average relative approximation error as a function of the number N of modes used in the online phase.

**Figure 23.**Average number of iterations needed in the implicit step in order to reach convergence, as a function of the number N of reduced basis for ${\mathit{u}}_{f}$, ${p}_{f}$, ${\mathit{d}}_{s}$.

**Figure 24.**A comparison between the energy retained by the first modes for ${\mathit{z}}_{f}$ and for ${\mathit{u}}_{f}$.

Parameter | Value | Parameter | Value |
---|---|---|---|

Fluid density ${\rho}_{f}$$\left[{10}^{3}\frac{\mathrm{kg}}{{\mathrm{m}}^{3}}\right]$ | 1 | Solid density ${\rho}_{s}$$\left[{10}^{3}\frac{\mathrm{k}\mathrm{g}}{{\mathrm{m}}^{3}}\right]$ | 1 |

Fluid kinematic viscosity ${\nu}_{f}$$\left[{10}^{-3}\frac{{\mathrm{m}}^{2}}{\mathrm{s}}\right]$ | 1 | 2nd Lamé constant (solid shear modulus) ${\mu}_{s}$$\left[{10}^{6}\frac{\mathrm{k}\mathrm{g}}{\mathrm{m}{\mathrm{s}}^{2}}\right]$ | $0.5$ |

Mean inflow velocity $\overline{U}$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ | 1 | 1st Lamé constant ${\lambda}_{s}$ | $0.4$ |

Fluid external force ${\mathit{b}}_{f}$ | $(0,0)$ | Solid external force ${\mathit{b}}_{s}$ | $(0,0)$ |

Time Discretization Parameters | Value |
---|---|

Timestep $\Delta T$ | $0.01$ s |

Total number of iterations ${N}_{T}$ | ${10}^{3}$ |

$\gamma $ | $0.25$ |

$\beta $ | $0.5$ |

Space Discretization Parameters | Value |

FE velocity order | 2 |

FE pressure order | 2 |

FE displacement order (${\mathit{d}}_{f}$ and ${\mathit{d}}_{s}$) | 2 |

FE multiplier order (${\mathit{\lambda}}_{u}$ and ${\mathit{\lambda}}_{d}$) | 1 |

mesh resolution using mshr mesh generator | 128 |

Time Discretization Parameters | Value |
---|---|

$\Delta T$ | $0.0001$ s |

total number of iterations ${N}_{T}$ | ${10}^{4}$ |

Space Discretization Parameters | Value |

FE velocity order | 2 |

FE pressure order | 1 |

FE displacement order | 2 |

mesh resolution using mshr generator | 128 |

tolerance $\epsilon $ for the implicit iterations | ${10}^{-5}$ |

Monolithic Approach | Value |
---|---|

$\Delta T$ | $0.01$ s |

number of time iterations i of the RB solver | 200 |

solver for the system | Newton method |

average iterations of Newton method | 4 |

absolute tolerance for Newton method | $\left|\right|\xb7{\left|\right|}_{\infty}<6\xb7{10}^{-6}$ |

computational time to solve the online system for one time iteration | $224.9$ s |

Partitioned Approach | Value |

$\Delta T$ | $0.001$ s |

number of time iterations i of the RB solver | 2000 |

solver for explicit fluid step | Newton method |

average number of iterations of Newton method | 2 |

absolute tolerance for Newton method | $\left|\right|\xb7{\left|\right|}_{\infty}<6\xb7{10}^{-6}$ |

computational time to solve the online systems (explicit + implicit) for one time iteration | $162.68$ s |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nonino, M.; Ballarin, F.; Rozza, G. A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems. *Fluids* **2021**, *6*, 229.
https://doi.org/10.3390/fluids6060229

**AMA Style**

Nonino M, Ballarin F, Rozza G. A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems. *Fluids*. 2021; 6(6):229.
https://doi.org/10.3390/fluids6060229

**Chicago/Turabian Style**

Nonino, Monica, Francesco Ballarin, and Gianluigi Rozza. 2021. "A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems" *Fluids* 6, no. 6: 229.
https://doi.org/10.3390/fluids6060229