# The Seasonal Variability of the Ocean Energy Cycle from a Quasi-Geostrophic Double Gyre Ensemble

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model Description

## 3. Derivation of the Lorenz Energy Cycle

## 4. Results

#### 4.1. The Domain Integrated Lorenz Energy Cycle

#### 4.2. Time Lag in Lower-Layer Energetics

## 5. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

`xarray`Python package [60], which we used to post process the model outputs.

## Conflicts of Interest

## Appendix A. Derivation of the Layered Quasi-Geostrophic Potential Vorticity

**Figure A1.**Schematic of a relation between buoyancy (B) and layer interface displacement ($\eta $). The background buoyancy is ${B}_{0}$ defined at $z=H$.

## Appendix B. The Omega Equation with a Temporally Varying Background Stratification

## Appendix C. Decomposing the Mean and Eddy Energetics

## Appendix D. The Three-Layer QG Lorenz Energy Cycle

## References

- Phillips, N.A. The general circulation of the atmosphere: A numerical experiment. Q. J. R. Meteorol. Soc.
**1956**, 82, 123–164. [Google Scholar] [CrossRef] - Lorenz, E.N. The Nature and Theory of the General Circulation of the Atmosphere; World Meteorological Organization: Geneva, Switzerland, 1967; Volume 218. [Google Scholar]
- Holland, W.R. The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr.
**1978**, 8, 363–392. [Google Scholar] [CrossRef] [Green Version] - Holland, W.R.; Schmitz, W.J. Zonal penetration scale of model midlatitude jets. J. Phys. Oceanogr.
**1985**, 15, 1859–1875. [Google Scholar] [CrossRef] [Green Version] - Kang, D.; Curchitser, E.N. Energetics of Eddy–Mean Flow Interactions in the Gulf Stream Region. J. Phys. Oceanogr.
**2015**, 45, 1103–1120. [Google Scholar] [CrossRef] - McWilliams, J.C. A perspective on the legacy of Edward Lorenz. Earth Space Sci.
**2019**, 6, 336–350. [Google Scholar] [CrossRef] [Green Version] - Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun.
**2018**, 9. [Google Scholar] [CrossRef] [Green Version] - Ajayi, A.; Le Sommer, J.; Chassignet, E.; Molines, J.M.; Xu, X.; Albert, A.; Cosme, E. Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric-Resolution Ocean Models. J. Geophys. Res. Ocean.
**2020**, 125, e2019JC015827. [Google Scholar] [CrossRef] - Lévy, M.; Franks, P.J.; Smith, K.S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun.
**2018**, 9, 1–16. [Google Scholar] [CrossRef] [Green Version] - Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale processes and dynamics. Ocean Model. Eddying Regime
**2008**, 177, 17–38. [Google Scholar] [CrossRef] [Green Version] - McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2016**, 472, 20160117. [Google Scholar] [CrossRef] [PubMed] - Buckingham, C.E.; Naveira Garabato, A.C.; Thompson, A.F.; Brannigan, L.; Lazar, A.; Marshall, D.P.; George Nurser, A.; Damerell, G.; Heywood, K.J.; Belcher, S.E. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett.
**2016**, 43, 2118–2126. [Google Scholar] [CrossRef] [Green Version] - Uchida, T.; Balwada, D.; Abernathey, R.; McKinley, G.; Smith, S.; Levy, M. The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst.
**2019**, 11, 3934–3958. [Google Scholar] [CrossRef] [Green Version] - Siegelman, L.; Klein, P.; Rivière, P.; Thompson, A.F.; Torres, H.S.; Flexas, M.; Menemenlis, D. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci.
**2020**, 13, 50–55. [Google Scholar] [CrossRef] - Tagklis, F.; Bracco, A.; Ito, T.; Castelao, R. Submesoscale modulation of deep water formation in the Labrador Sea. Sci. Rep.
**2020**, 10, 1–13. [Google Scholar] [CrossRef] - Charney, J.G. Geostrophic turbulence. J. Atmos. Sci.
**1971**, 28, 1087–1095. [Google Scholar] [CrossRef] [Green Version] - Arbic, B.K.; Polzin, K.L.; Scott, R.B.; Richman, J.G.; Shriver, J.F. On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr.
**2013**, 43, 283–300. [Google Scholar] [CrossRef] [Green Version] - Aluie, H.; Hecht, M.; Vallis, G.K. Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-Graining Approach. J. Phys. Oceanogr.
**2018**, 48, 225–244. [Google Scholar] [CrossRef] [Green Version] - Yang, Y.; McWilliams, J.C.; Liang, X.S.; Zhang, H.; Weisberg, R.H.; Liu, Y.; Menemenlis, D. Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico. J. Phys. Oceanogr.
**2020**. [Google Scholar] [CrossRef] - Font, J.; Garcialadona, E.; Gorriz, E. The seasonality of mesoscale motion in the northern current of the western mediterranean-several years of evidence. Oceanol. Acta
**1995**, 18, 207–219. [Google Scholar] - Strub, P.T.; James, C. Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and eddy statistics. Deep Sea Res. Part II Top. Stud. Oceanogr.
**2000**, 47, 831–870. [Google Scholar] [CrossRef] - Eden, C.; Böning, C. Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr.
**2002**, 32, 3346–3363. [Google Scholar] [CrossRef] [Green Version] - Pujol, M.I.; Larnicol, G. Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst.
**2005**, 58, 121–142. [Google Scholar] [CrossRef] - Jouanno, J.; Sheinbaum, J.; Barnier, B.; Molines, J.M.; Candela, J. Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea. J. Phys. Oceanogr.
**2012**, 42, 2041–2055. [Google Scholar] [CrossRef] - Qiu, B.; Chen, S.; Klein, P.; Sasaki, H.; Sasai, Y. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr.
**2014**, 44, 3079–3098. [Google Scholar] [CrossRef] [Green Version] - Sasaki, H.; Klein, P.; Qiu, B.; Sasai, Y. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun.
**2014**, 5, 1–8. [Google Scholar] [CrossRef] [Green Version] - Uchida, T.; Abernathey, R.; Smith, S. Seasonality of eddy kinetic energy in an eddy permitting global climate model. Ocean Model.
**2017**, 118, 41–58. [Google Scholar] [CrossRef] - Dong, J.; Fox-Kemper, B.; Zhang, H.; Dong, C. The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett.
**2020**. [Google Scholar] [CrossRef] [Green Version] - Schubert, R.; Jonathan, G.; Greatbatch, R.J.; Baschek, B.; Biastoch, A. The Submesoscale Kinetic Energy Cascade: Mesoscale Absorption of Submesoscale Mixed-Layer Eddies and Frontal Downscale Fluxes. J. Phys. Oceanogr.
**2020**. [Google Scholar] [CrossRef] - Ajayi, A.; Le Sommer, J.; Chassignet, E.; Molines, J.M.; Xu, X.; Albert, A.; Dewar, W.K. Diagnosing cross-scale kinetic energy exchanges from two submesoscale permitting ocean models. J. Adv. Model. Earth Syst.
**2021**. [Google Scholar] [CrossRef] - Fox-Kemper, B.; Ferrari, R.; Hallberg, R. Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr.
**2008**, 38, 1145–1165. [Google Scholar] [CrossRef] - Johnson, L.; Lee, C.M.; D’Asaro, E.A. Global Estimates of Lateral Springtime Restratification. J. Phys. Oceanogr.
**2016**, 46, 1555–1573. [Google Scholar] [CrossRef] - Thompson, A.F.; Lazar, A.; Buckingham, C.; Naveira Garabato, A.C.; Damerell, G.M.; Heywood, K.J. Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders. J. Phys. Oceanogr.
**2016**, 46, 1285–1307. [Google Scholar] [CrossRef] [Green Version] - Rieck, J.K.; Böning, C.W.; Greatbatch, R.J.; Scheinert, M. Seasonal variability of eddy kinetic energy in a global high-resolution ocean model. Geophys. Res. Lett.
**2015**, 42, 9379–9386. [Google Scholar] [CrossRef] [Green Version] - Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987. [Google Scholar]
- Bachman, S.; Fox-Kemper, B.; Bryan, F. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Model.
**2015**, 86, 1–14. [Google Scholar] [CrossRef] - Young, W.R. An Exact Thickness-Weighted Average Formulation of the Boussinesq Equations. J. Phys. Oceanogr.
**2012**, 42, 692–707. [Google Scholar] [CrossRef] - Deremble, B.; Martinez, E.M. MSOM: Multiple Scale Ocean Model; MEOM Research Group: Grenoble, France, 2020. [Google Scholar] [CrossRef]
- Popinet, S. A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations. J. Comput. Phys.
**2015**, 302, 336–358. [Google Scholar] [CrossRef] [Green Version] - Verron, J. Nudging satellite altimeter data into quasi-geostrophic ocean models. J. Geophys. Res. Ocean.
**1992**, 97, 7479–7491. [Google Scholar] [CrossRef] - Barnier, B.; Le Provost, C. Influence of bottom topography roughness on the jet and inertial recirculation of a mid-latitude gyre. Dyn. Atmos. Ocean.
**1993**, 18, 29–65. [Google Scholar] [CrossRef] - Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys.
**1997**, 135, 103–114. [Google Scholar] [CrossRef] [Green Version] - Karabasov, S.; Berloff, P.S.; Goloviznin, V. CABARET in the ocean gyres. Ocean Model.
**2009**, 30, 155–168. [Google Scholar] [CrossRef] [Green Version] - Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model.
**2013**, 72, 92–103. [Google Scholar] [CrossRef] - Rhines, P.B.; Schopp, R. The wind-driven circulation: Quasi-geostrophic simulations and theory for nonsymmetric winds. J. Phys. Oceanogr.
**1991**, 21, 1438–1469. [Google Scholar] [CrossRef] [Green Version] - Hogg, A.M.C.; Killworth, P.D.; Blundell, J.R.; Dewar, W.K. Mechanisms of decadal variability of the wind-driven ocean circulation. J. Phys. Oceanogr.
**2005**, 35, 512–531. [Google Scholar] [CrossRef] - Simonnet, E. Quantization of the low-frequency variability of the double-gyre circulation. J. Phys. Oceanogr.
**2005**, 35, 2268–2290. [Google Scholar] [CrossRef] - Berloff, P.; Hogg, A.M.C.; Dewar, W. The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr.
**2007**, 37, 2363–2386. [Google Scholar] [CrossRef] [Green Version] - Chelton, D.B.; DeSzoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr.
**1998**, 28, 433–460. [Google Scholar] [CrossRef] - Dijkstra, H.A.; Wubs, F.W.; Cliffe, A.K.; Doedel, E.; Dragomirescu, I.F.; Eckhardt, B.; Gelfgat, A.Y.; Hazel, A.L.; Lucarini, V.; Salinger, A.G.; et al. Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Commun. Comput. Phys.
**2014**, 15, 1–45. [Google Scholar] [CrossRef] - Hoskins, B.J.; Draghici, I.; Davies, H.C. A new look at the ω-equation. Q. J. R. Meteorol. Soc.
**1978**, 104, 31–38. [Google Scholar] [CrossRef] - Gill, A.E. Atmosphere-Ocean Dynamics; Academic Press: Cambridge, MA, USA, 1982; Volume 30, 662p. [Google Scholar]
- Grooms, I.; Julien, K.; Fox-Kemper, B. On the interactions between planetary geostrophy and mesoscale eddies. Dyn. Atmos. Ocean.
**2011**, 51, 109–136. [Google Scholar] [CrossRef] - Jamet, Q.; Deremble, B.; Wienders, N.; Uchida, T.; Dewar, W.K. On Wind-driven Energetics of Subtropical Gyres. J. Adv. Model. Earth Syst.
**2021**, e2020MS002329. [Google Scholar] [CrossRef] - Sérazin, G.; Jaymond, A.; Leroux, S.; Penduff, T.; Bessières, L.; Llovel, W.; Barnier, B.; Molines, J.M.; Terray, L. A global probabilistic study of the ocean heat content low-frequency variability: Atmospheric forcing versus oceanic chaos. Geophys. Res. Lett.
**2017**, 44, 5580–5589. [Google Scholar] [CrossRef] [Green Version] - Leroux, S.; Penduff, T.; Bessières, L.; Molines, J.M.; Brankart, J.M.; Sérazin, G.; Barnier, B.; Terray, L. Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast. J. Clim.
**2018**, 31, 1183–1203. [Google Scholar] [CrossRef] - Jamet, Q.; Dewar, W.K.; Wienders, N.; Deremble, B. Spatiotemporal Patterns of Chaos in the Atlantic Overturning Circulation. Geophys. Res. Lett.
**2019**, 46, 7509–7517. [Google Scholar] [CrossRef] [Green Version] - Chassignet, E.P.; Marshall, D.P. Gulf Stream separation in numerical ocean models. Geophys. Monogr. Ser.
**2008**, 177. [Google Scholar] [CrossRef] [Green Version] - Hoyer, S.; Hamman, J.; Roos, M.; Cherian, D.; Fitzgerald, C.; Fujii, K.; Maussion, F.; Crusaderky; Kleeman, A.; Clark, S.; et al.
`xarray`: N-D Labeled Arrays and Datasets; USA. 2020. Available online: http://doi.org/10.5281/zenodo.4299126 (accessed on 9 April 2021). - Griffies, S.M. The Gent–McWilliams skew flux. J. Phys. Oceanogr.
**1998**, 28, 831–841. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Vertical structure of the three-layer QG model with a rigid lid and flat bottom. The layer interface displacement (${\eta}_{i}$) is shown in the thin curvy lines and net layer thickness is ${h}_{i}={H}_{i}+{\eta}_{i-1}-{\eta}_{i}$. The stream functions (${\psi}_{i}$) are defined within each layer.

**Figure 2.**Time series of the horizontally averaged barotropic (

**a**) and first-layer TKE (

**b**). Each ensemble member is shown with thin gray lines and standard deviation of the ensemble mean in black shading. The CTRL run is shown with a red dashed line and ensemble mean with a cyan dot-dashed line. The reduced gravity is shown in blue plotted against the right y axis.

**Figure 3.**The summer and wintertime mean and eddy KE and their difference during the last year of output (

**a**–

**f**). Note the differences are plotted on a logarithmic scale. (

**g**,

**h**) Snapshot of eddy PV for summer and winter during the last year of output from the CTRL run. All panels show the variable in the first layer.

**Figure 4.**Time series of each term in the domain-integrated LEC. (

**a**) The mean and eddy KE (black) and APE (red) reservoirs in the units of ×${10}^{13}$ [(J/kg) m${}^{3}$] and stratification of the first layer interface (blue; ${g}_{1}^{\prime}$). MAPE is multiplied by 0.1 to have it fit on the same y axis. (

**b**) The energy fluxes between each energy reservoir and forcing terms due to surface wind stress (${F}_{s}^{{K}^{\#}}$) and temporally varying BPE. (

**c**) Dissipation terms due to horizontal viscosity (${D}_{h}$) and bottom friction (${D}_{b}$). The mean and eddy horizontal dissipation terms are lumped together and fluxes are in the units of ×${10}^{6}$ [(W/kg) m${}^{3}$]. The forcing and dissipation terms are detailed in Appendix D.

**Figure 5.**Time series of the seasonal climatology of energy fluxes between the energy reservoirs (

**a**). (

**b**,

**c**) The LEC diagram for the climatological summer and winter averaged over the last five years of output. The energies are in the units of $\times {10}^{13}$ [(J/kg) m${}^{3}$] and fluxes are in $\times {10}^{6}$ [(W/kg) m${}^{3}$]. The energy exchanges do not exactly cancel out due to each reservoir having temporal variability.

**Figure 6.**Time series of volume-integrated EKE over each layer, and fluxes within and between layers (${\Pi}_{{\mathcal{K}}_{1}\to {\mathcal{K}}_{2}}$, ${\Pi}_{{\mathcal{K}}_{2}\to {\mathcal{K}}_{3}}$) plotted along with the reduced gravity (${g}_{1}^{\prime}$). (

**a**) The EKEs have their temporal mean removed so as to plot against the same y axis. (

**b**) A rolling mean by five time steps (∼29 days) is applied to the time series of the energy fluxes. The energy flux from MKE to EKE within the two bottom layers is summed up (${\Pi}_{{K}_{2,3}^{\#}\to {\mathcal{K}}_{2,3}}$) and conversion from APE is shown as the conversion rate volume integrated over the three layers as the amount that goes into each layer is simply the total conversion weighted by layer thickness (cf. Equations (23), (28), (29) and (32)). The conversion from ${\mathcal{P}}_{1}$ and ${\mathcal{P}}_{2}$ were in sync with each other (not shown). For further details regarding each term, see Appendix D.

**Table 1.**Parameters used to configure the three-layer QG simulation and dimensionalized characteristic scales. The bottom Ekman number is the ratio between the bottom Ekman-layer thickness and ${\widehat{H}}_{3}$ and bottom friction is $\u03f5=E{k}^{b}/(2R{o}^{m}{\widehat{H}}_{3})$. Beta is dimensionalized as $\beta =\widehat{\beta}U/{L}^{2}$ and the dimensionalized domain size is $4000\phantom{\rule{3.33333pt}{0ex}}\mathrm{km}\phantom{\rule{4pt}{0ex}}(={\widehat{L}}_{0}L)$. The frequency of $Fr$ translates approximately to a 360-day year ($={f}_{Fr}^{-1}L/U$). The prognostic time stepping is determined via the CFL condition within values smaller than ${\delta}_{\widehat{t}}^{\mathrm{max}}$.

Parameter | Notation | Value | Unit |
---|---|---|---|

Number of horizontal grids | N | 1024 | - |

Number of vertical layers | ${n}_{l}$ | 3 | - |

Non-dim. horizontal domain size | ${\widehat{L}}_{0}$ | 80 | - |

Non-dim. horizontal resolution | ${\delta}_{\widehat{x}}$ | ${N}^{-1}{\widehat{L}}_{0}$ | - |

Background Rossby number | $R{o}^{m}$ | $0.025$ | - |

Non-dim. Coriolis parameter | ${\widehat{f}}_{0}$ | ${R{o}^{m}}^{-1}$ | - |

Bottom Ekman number | $E{k}^{b}$ | $0.004$ | - |

Non-dim. surface Ekman pumping | ${\widehat{\tau}}_{0}$ | $0.0001$ | - |

Biharmonic Reynolds number | $R{e}_{4}$ | 4000 | - |

Non-dim. beta | $\widehat{\beta}$ | $0.5$ | - |

Background Froude number | $F{r}_{1}^{m};F{r}_{2}^{m}$ | $0.00409959;0.01319355$ | - |

Amplitude of $F{r}_{i}$ | ${\widehat{A}}_{F{r}_{1}};{\widehat{A}}_{F{r}_{2}}$ | $0.1;0$ | - |

Non-dim. frequency of $F{r}_{i}$ | ${\widehat{f}}_{F{r}_{1}};{\widehat{f}}_{F{r}_{2}}$ | $62.{2}^{-1};62.{2}^{-1}$ | - |

Non-dim. layer thickness | ${\widehat{H}}_{1};{\widehat{H}}_{2};{\widehat{H}}_{3}$ | $0.06;0.14;0.8$ | - |

Non-dim. reduced gravity | $\widehat{{g}_{i}^{\prime}}$ | ${F{r}_{i}}^{-2}\widehat{{H}_{i}^{\u2020}}$ | - |

Non-dim. maximum time stepping | ${\delta}_{\widehat{t}}^{\mathrm{max}}$ | $5\times {10}^{-2}$ | - |

CFL condition | - | $0.4$ | - |

Horizontal velocity | U | $0.1$ | [m s${}^{-1}$] |

Length scale | L | 50 | [km] |

Total layer thickness | H | 5000 | [m] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Uchida, T.; Deremble, B.; Penduff, T.
The Seasonal Variability of the Ocean Energy Cycle from a Quasi-Geostrophic Double Gyre Ensemble. *Fluids* **2021**, *6*, 206.
https://doi.org/10.3390/fluids6060206

**AMA Style**

Uchida T, Deremble B, Penduff T.
The Seasonal Variability of the Ocean Energy Cycle from a Quasi-Geostrophic Double Gyre Ensemble. *Fluids*. 2021; 6(6):206.
https://doi.org/10.3390/fluids6060206

**Chicago/Turabian Style**

Uchida, Takaya, Bruno Deremble, and Thierry Penduff.
2021. "The Seasonal Variability of the Ocean Energy Cycle from a Quasi-Geostrophic Double Gyre Ensemble" *Fluids* 6, no. 6: 206.
https://doi.org/10.3390/fluids6060206