Turbulent Characteristics and Air Entrainment Patterns in Breaking Surge Waves
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equation and Numerical Solutions
2.2. Computational Domain and Flow Conditions
3. Results
3.1. Subgrid-Scale Resolution
3.2. Water Depth Perturbations
3.3. Air Entrainment Profiles and Mixing Cones
3.4. Velocity Perturbations and Quadrant Analysis
3.5. Q-Criterion Analysis and Relation to Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Ensemble Averaging
References
- Xie, P.; Chu, V.H. The forces of tsunami waves on a vertical wall and on a structure of finite width. Coast. Eng. 2019, 149, 65–80. [Google Scholar] [CrossRef]
- Chanson, H. Hydraulics of Open Channel Flow; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Gilmore, F.; Plesset, M.; Crossley, H., Jr. The analogy between hydraulic jumps in liquids and shock waves in gases. J. Appl. Phys. 1950, 21, 243–249. [Google Scholar] [CrossRef]
- Karimpour, S.; Chu, V.H. High-order interpolation schemes for shear instability simulations. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 1340–1360. [Google Scholar] [CrossRef] [Green Version]
- Karimpour, S.; Chu, V.H. The role of waves on mixing in shallow waters. Can. J. Civ. Eng. 2019, 46, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Leng, X.; Chanson, H. Upstream propagation of surges and bores: Free-surface observations. Coast. Eng. J. 2017, 59, 1750003. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chanson, H. Sediment motion beneath surges and bores. In Proceedings of the Daniel Bung, Blake Tullis, 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018. [Google Scholar] [CrossRef]
- Chanson, H.; Tan, K.K. Particle dispersion under tidal bores: Application to sediments and fish eggs. In Proceedings of the 7th International Conference on Multiphase Flow ICMF 2010, Tampa, FL, USA, 30 May–4 June 2010. [Google Scholar]
- Takahashi, M.; Ohtsu, I. Effects of inflows on air entrainment in hydraulic jumps below a gate. J. Hydraul. Res. 2017, 55, 259–268. [Google Scholar] [CrossRef]
- Chanson, H. Free-surface aeration in dam break waves: An experimental study. In Proceedings of the International Conference on Hydraulics of Dams and River Structures, Tehran, Iran, 26–28 April 2004. [Google Scholar]
- Zheng, F.; Li, Y.; Xuan, G.; Li, Z.; Zhu, L. Characteristics of positive surges in a rectangular channel. Water 2018, 10, 1473. [Google Scholar] [CrossRef] [Green Version]
- Ting, F.C. Large-scale turbulence under a solitary wave. Coast. Eng. 2006, 53, 441–462. [Google Scholar] [CrossRef]
- Kimmoun, O.; Branger, H. A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech. 2007, 588, 353–397. [Google Scholar] [CrossRef]
- Watanabe, Y.; Saeki, H.; Hosking, R.J. Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 2005, 545, 291–328. [Google Scholar] [CrossRef] [Green Version]
- Lubin, P.; Glockner, S. Numerical simulations of three-dimensional plunging breaking waves: Generation and evolution of aerated vortex filaments. J. Fluid Mech. 2015, 767, 364–393. [Google Scholar] [CrossRef]
- Leng, X.; Simon, B.; Khezri, N.; Lubin, P.; Chanson, H. CFD modeling of tidal bores: Development and validation challenges. Coast. Eng. J. 2018, 60, 423–436. [Google Scholar] [CrossRef]
- Munters, W.; Meneveau, C.; Meyers, J. Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys. Fluids 2016, 28, 025112. [Google Scholar] [CrossRef] [Green Version]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Chanson, H.; Lubin, P.; Glockner, S. Unsteady Turbulence in a Shock: Physical and Numerical Modelling in Tidal Bores and Hydraulic Jumps; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Yoshizawa, A.; Horiuti, K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 1985, 54, 2834–2839. [Google Scholar] [CrossRef]
- Almeland, S. Implementation of an air-entrainment model in interFoam. In Proceedings of CFD with OpenSource Software; Nilsson, E., Ed.; Chalmers University of Technology: Göteborg, Sweden, 2018. [Google Scholar]
- Cifani, P.; Michalek, W.; Priems, G.; Kuerten, J.G.; van der Geld, C.; Geurts, B.J. A comparison between the surface compression method and an interface reconstruction method for the VOF approach. Comput. Fluids 2016, 136, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Greenshields, C.J. OpenFOAM User Guide; OpenFOAM Found, Ltd.: London, England, 2015; Volume 3, p. 47. [Google Scholar]
- Chen, L.; Zang, J.; Hillis, A.J.; Morgan, G.C.; Plummer, A.R. Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Eng. 2014, 88, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 1987, 177, 133–166. [Google Scholar] [CrossRef] [Green Version]
- Karimpour, S.; Wang, T.; Chu, V.H. The exchanges between the mainstream in an open channel and a recirculating flow on its side at large Froude numbers. J. Fluid Mech. 2021, 920, A8. [Google Scholar] [CrossRef]
- Matheou, G.; Chung, D. Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci. 2014, 71, 4439–4460. [Google Scholar] [CrossRef]
- Koch, C.; Chanson, H. Turbulence measurements in positive surges and bores. J. Hydraul. Res. 2009, 47, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Leng, X.; Chanson, H. Coupling between free-surface fluctuations, velocity fluctuations and turbulent Reynolds stresses during the upstream propagation of positive surges, bores and compression waves. Environ. Fluid Mech. 2016, 16, 695–719. [Google Scholar] [CrossRef] [Green Version]
- Rajaratnam, N. Advances in Hydroscience; Academic Press: New York, NY, USA, 1967; Volume 4. [Google Scholar]
- Wüthrich, D.; Shi, R.; Chanson, H. Physical study of the 3-dimensional characteristics and free-surface properties of a breaking roller in bores and surges. Exp. Therm. Fluid Sci. 2020, 112, 109980. [Google Scholar]
- Chanson, H. Two-phase flow characteristics of an unsteady dam break wave flow. In Proceedings of the 30th IAHR Biennial Congress, Thessaloniki, Greece, 24–29 August 2003. [Google Scholar]
- Wang, H.; Chanson, H. Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water J. 2015, 12, 502–518. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Willmarth, W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 1973, 60, 481–511. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Antonia, R. Use of a quadrant analysis technique to identify coherent structures in a turbulent boundary layer. Phys. Fluids 1982, 25, 949–956. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Wray, P. Eddies, Stream, and Convergence Zones in Turbulent Flows. Studying Turbulence Using Numerical Simulation Databases, 2. Available online: https://ntrs.nasa.gov/citations/19890015184 (accessed on 7 June 2021).
ID | c | dx | dx | T | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(m) | (m) | (m/s) | (m) | (m) | (m) | (m) | (m) | (m) | ||
1 | 0.3 | 1.0 | 2.93 | 0.596 | 22 ∗ 0.7 | 0.0050 | 6.95 ∗ 0.1 | 0.0025 | 1.71 | 40 |
2-1 | 0.2 | 1.0 | 2.98 | 0.513 | 22 ∗ 0.6 | 0.0050 | 7.30 ∗ 0.1 | 0.0025 | 2.13 | 10 |
2-2 | 0.2 | 1.0 | 2.98 | 0.513 | 22 ∗ 0.6 | 0.0050 | 7.30 ∗ 0.1 | 0.0025 | 2.13 | 20 |
2-3 | 0.2 | 1.0 | 2.98 | 0.513 | 22 ∗ 0.6 | 0.0050 | 7.30 ∗ 0.1 | 0.0025 | 2.13 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Venkateshwaran, A.; Karimpour, S. Turbulent Characteristics and Air Entrainment Patterns in Breaking Surge Waves. Fluids 2021, 6, 422. https://doi.org/10.3390/fluids6120422
Li Z, Venkateshwaran A, Karimpour S. Turbulent Characteristics and Air Entrainment Patterns in Breaking Surge Waves. Fluids. 2021; 6(12):422. https://doi.org/10.3390/fluids6120422
Chicago/Turabian StyleLi, Zhuoran, Akash Venkateshwaran, and Shooka Karimpour. 2021. "Turbulent Characteristics and Air Entrainment Patterns in Breaking Surge Waves" Fluids 6, no. 12: 422. https://doi.org/10.3390/fluids6120422
APA StyleLi, Z., Venkateshwaran, A., & Karimpour, S. (2021). Turbulent Characteristics and Air Entrainment Patterns in Breaking Surge Waves. Fluids, 6(12), 422. https://doi.org/10.3390/fluids6120422