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Abstract: Breaking surge waves are highly turbulent three-dimensional (3D) flows, which occur
when the water flow encounters a sudden change in depth or velocity. The 3D turbulent structures
across a breaking surge are induced by the velocity gradient across the surge and phase discontinuity
at the front. This paper examined the turbulent structures in breaking surge waves with Froude
numbers of 1.71 and 2.13 by investigating the air entrainment and perturbation patterns across the
surge front. A combination of the Volume Of Fluid (VOF) method and Large Eddy Simulation (LES)
was utilized to capture air entrainment and turbulent structures simultaneously. The 3D nature of the
vortical structures was simulated by implementing a spanwise periodic boundary. The water surface
perturbation and air concentration profiles were extracted, and the averaged air concentration profiles
obtained from the numerical simulations were consistent with laboratory observations reported in
the literature. The linkage between turbulent kinetic energy distribution and air entrainment was
also explored in this paper. Finally, using quadrant analysis and the Q-criterion, this paper examined
the role of the spanwise perturbations in the development of turbulent structures in the surge front.

Keywords: surge Froude number; 3D turbulent structures; air entrainment; free-surface perturba-
tions; quadrant analysis; large eddy simulation; volume of fluid

1. Introduction

Surge waves are transient open channel flows that form due to an abrupt change in
flow depth or velocity. Surge waves appear in man-made hydraulic conveyance structures
and natural systems. Tsunami waves, for instance, are generated by the displacement of
water caused by landslides, volcanic activity, or earthquakes [1]. In man-made canals,
surge waves are often initiated by the gate closure downstream [2]. One of the main
characteristics of propagating surge waves and hydraulic jumps is the discontinuity in
water depth and velocity across the wave front. These waves have been historically known
to be analogous to shock waves in compressible flow [3] as both categories are compression
waves of finite amplitude. This analogy is also founded on the basis of the similarity
between shallow water equations and two-dimensional gas flow equations, as recently
described by Karimpour and Chu [4,5].

Breaking surge waves are associated with Froude numbers ranging between 1.4 and
1.6 and higher, while smaller Froude numbers are linked to undular bores [6]. The breaking
front of surge waves at high-surge Froude numbers has very complex dynamics, due to
turbulence and air entrainment interactions. The turbulent characteristics across a breaking
surge also contribute to sediment gathering, induce contaminant and debris transport,
and cause bed erosion. Sediment entrainment and transport can in turn lead to a change
in morphology along the propagation of the surge wave [7,8]. Shallow water hydraulics
and the Method of Characteristics (MOC) provide reliable estimates of the phenomena by
simulating the water and velocity in the streamwise direction (see, e.g., [1]). Nevertheless,
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these models are incapable of capturing the dynamic surge front, as they assume the
hydrostatic pressure distribution in depth.

The turbulence in a breaking surge wave is induced by two regimes. The surge
toe separates two areas of distinct advective velocities upstream and downstream of the
surge, while the surge moves with celerity. The velocity gradient excited by environmental
perturbations leads to the formation of a shear layer originating at the surge toe [5,9,10].
The definition of the surge Froude number based on the coordinate system in translation
with the surge wave [11] is analogous to the definition of the convective Froude number
for shear layers [4]. The secondary regime that induces eddy generation is the breaking of
the surge front [12,13].

The turbulent structures across the mixing layer and breaking surge are initiated
due to velocity gradients in depth and pressure gradients in the streamwise direction.
Although some of the structures are induced and initiated as two-dimensional, in time,
they evolve into 3D structures [14,15]. Several numerical studies have investigated the
turbulent structures and Reynolds stresses across breaking and undular surge waves. Many
of these studies, however, have overlooked the 3D nature of the fully cascading turbulent
flow across a breaking wave (e.g., [16]). Despite their intricate nature, only a few numerical
studies have investigated the 3D nature of the rolling, breaking, and energy cascade in
surge waves [13,15].

Due to the 3D nature of fully cascading eddies at the surge front, it is critical to
capture the turbulent spanwise perturbations. Capturing this dimension requires delicate
consideration of the spanwise scale of eddies. The extent of the spanwise boundary
condition has a significant affect on the suppression of large-scale eddies, and it has to be
selected to accommodate the largest scales [17]. Furthermore, most existing 3D numerical
studies on surge waves use Large Eddy Simulation (LES). The performance of LES, however,
significantly depends on the grid resolution and filter size [18]. Consideration of the impact
of the spanwise boundary and LES filter resolution is often overlooked in many existing
3D studies on breaking surge waves [14,19].

In this study, we investigated the air entrainment patterns and their connection to the
turbulent structures of breaking surge waves of Froude numbers higher than 1.6. Using a
robust and accurate LES model, we resolved the majority of the large-scale perturbations,
as suggested by Pope [18]. Furthermore, by applying a periodic boundary condition, we
examined the role of spanwise perturbations in the formation of fully developed turbulent
structures. Perturbation statistics are associated with the instability mechanisms that have
been historically reported for breaking surge waves. The air entrainment patterns are
reported and linked to the turbulent kinetic energy distribution in a breaking surge wave.

2. Methodology

We employed Open-source Field Operation and Manipulation (OpenFOAM) v7 to
simulate the dynamic and transient turbulent characteristics of moving surge waves. We
chose InterFoam, an incompressible multiphase solver employing the Volume-Of-Fluid
(VOF) interface-capturing methodology for simulating free-surface flows. Furthermore,
Large Eddy Simulation (LES) was employed to capture the larger than scale motions. While
the energy containing eddies was captured in LES, the impact of smaller than scale motion
was modeled using a subgrid-scale viscosity.

2.1. Governing Equation and Numerical Solutions

The governing equations for LES are derived by applying the convolution filter to the
unsteady Navier–Stokes equations:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (1)
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∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+
∂τSGS

ij

∂xj
, (2)

where u is the filtered velocity, p the filtered pressure, µ the dynamic viscosity, and i, j = 1,
2, 3 the x-, y-, z-directions, respectively. τSGS

ij represents the residual turbulent stress terms,
from the Subgrid-Scale (SGS) perturbations, which are defined as:

τSGS
ij = ρui uj − ρuiuj (3)

By employing the Boussinesq hypothesis, the SGS turbulent stresses can be esti-
mated as:

τSGS
ij = −2µtSij +

1
3

τSGS
ii δij (4)

where δij is the Kronecker delta and the strain rate Sij = 1
2 (

∂ui
∂xj

+
∂uj
∂xi

). µt is the eddy
viscosity of the SGS motions and is given by:

µt = ρCk∆
√

kSGS (5)

where Ck = 0.094, kSGS is the turbulent kinetic energy in the subgrid scale, and ∆ is the
filter size. The kSGS is calculated using the following transport equation [20]:

∂(ρkSGS)

∂t
+

∂(ρuikSGS)

∂xi
=

∂

∂xi
[(µ + µt)

∂kSGS
∂xi

]− ρτSGS
ij Sij − Cε

ρk3/2
SGS
∆

(6)

where Cε = 1.04. The transport model proposed by Yoshizawa and Horiuti [20] was
applied to ensure that the subgrid viscosity was small in laminar and shear flows and was
not as dissipative as the well-known Smagorinsky eddy viscosity.

To capture the interface between water and air, the VOF was used. The fluid properties
in this method are estimated using the fractional fluid volume in each cell. For current
simulation for 2-phase air and water flow, based on the water and air volume fractions, αw
and αa = 1− αw, the combined phase density and viscosity is defined as:

ρ = ρwαw + ρa(1− αw); µ = µwαw + µa(1− αw) (7)

The phase distribution for αw can be determined from [21]:

∂αw

∂t
+

∂(uiαw)

∂xi
+

∂

∂xi
[uciαw(1− αw)] = 0 (8)

In Equation (8), the third term is an artificial compression term, intended to sharpen
the interface [22], where uci represents the relative velocity for water and air and given by:

uci = Cα
|u|
|Oαw|

∂αw

∂xi
(9)

where Cα represents the compression strength and the recommended value for Cα = 1 [23].
While the temporal discretization is semi-implicit, we employed different spatial

discretization schemes for the convection terms. The convection terms appear in the
momentum, kSGS transport, as well as phase equation, and spatial discretizations were
performed based on the sensitivity and the nature of these terms, as discussed below.
The discretization of the subgrid-scale turbulent kinetic energy flux, kSGS, appearing in
Equation (6), was performed using a first-order upwind biased interpolation. However,
the advection flux in the momentum equation requires a higher-order approximation, and
therefore, an upwind biased central differencing was selected. On the other hand, for the
flux of phase, αw, in Equation (8), the Van Leer Total Variation Diminishing (TVD) method
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was selected. This TVD scheme is second-order accurate and is bounded, and its accuracy
can drop to as low as first order in regions with discontinuity. As demonstrated in Figure 1,
starting from its initial condition, the moving surge wave exhibits discontinuity in phase at
the surge front, and it requires a TVD scheme, or an alternative, to ensure numerical stability
and accuracy [4,23]. The pressure–velocity coupling in the Navier–Stokes equations was
conducted using the PIMPLE algorithm [24].

2.2. Computational Domain and Flow Conditions

A three-dimensional computational domain was designed as shown in Figure 1a.
In order to achieve fully developed turbulent flow across a breaking surge wave, we
implemented a periodic boundary condition in the spanwise z-direction. This technique is
used in open-channel flow (see, e.g., [25]) and in other flow types [17] to produce a fully
developed turbulent flow, where the perturbations are fed back into the domain. The size
of the periodic domain width, T, however, should be selected so that it is several times
larger than the largest flow scale in the domain [17]. The turbulent scale, however, is
not studied for breaking waves. Therefore, in order to fully capture all turbulent scales,
including large scales, we implemented multiple domain width sizes, T, and assessed the
role of the domain width on the growth of spanwise turbulent fluctuations.

Figure 1. Sketch of the computational domain: (a) 3D and (b) 2D side view.

The top face was set to open air by assigning an atmospheric boundary condition, and
the rest of the three faces were rigid, where smooth boundary conditions were applied.
Table 1 summarizes the geometry, flow, and initial conditions used in this paper. The initial
water depths in the upstream and downstream of the gate, d0 and d1, were designed based
on the Method of Characteristics (MOC). Using this analytical method, the breaking wave
celerity, c, was also estimated. The surge Froude number, Frs, is defined as:

Frs =
c + U1√

gd1
(10)
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where in this study, U1 = 0. Based on the MOC, Chanson [2] proposed the following
expression for the surge Froude number, Frs:

Frs =
c√
gd1

=
0.63545 + 0.3286( d1

d0
)0.65167

0.00251 + ( d1
d0
)0.65167

(11)

As suggested by Leng and Chanson [6], among others, breaking surge waves with
stronger turbulent characteristics correspond to surge Froude numbers of Frs > 1.4–1.6. The
initial conditions outlined in Figure 1 and Table 1 were designed to induce the formation
of breaking waves with higher Froude numbers outside of this range. The surge wave
celerity, c, varies slightly from 2.93 m/s to 2.98 m/s for Frs = 1.71 and 2.13, respectively.
The computational domain in the x-direction was stretched to Lxd = 24 m, downstream of
the gate, to ensure that wave reflection from the downstream boundary did not occur prior
to the end of simulation at t = 8 s. Similarly, the upstream stretch, Lxu, was Lxu = 25 m,
to avoid the reflection of negative characteristics from the upstream rigid boundary. The
domain size in the y-direction was kept at Ly = 1.2 m in all simulations.

A mesh size of ∆x = 0.01 m was applied. However, as explained by Karimpour et al. [26],
a finer resolution is required to capture the larger-than-scale perturbations in an LES model.
To ensure proper assessment of larger-than-scale perturbations and the Turbulent Kinetic
Energy (TKE), we performed a series of mesh sensitivity analyses. Our assessment showed
the necessity of two Areas of Refinements (ARs): AR1, which was designed to contain
the propagation area of the positive surge wave, and AR2 in the vicinity of the surge
toe, both illustrated in Figure 1b. In AR1, the grid was refined to dx1 = 0.005 m. To
capture the smaller-scale perturbations induced by the shear velocity in AR2, the grid
was further refined to dx2 = 0.0025 m. In Cases 1 and 2-3, the 3D computational domains
were discretized to more than 82 million computational grids. Further discussion of the
subgrid-scale resolution is presented in the Results Section.

Table 1. Domain geometry and flow conditions.

ID d1 d0 c d2 AR1 dx1 AR2 dx2 Frs T
(m) (m) (m/s) (m) (m2) (m) (m2) (m) (m)

1 0.3 1.0 2.93 0.596 22 ∗ 0.7 0.0050 6.95 ∗ 0.1 0.0025 1.71 40∆x
2-1 0.2 1.0 2.98 0.513 22 ∗ 0.6 0.0050 7.30 ∗ 0.1 0.0025 2.13 10∆x
2-2 0.2 1.0 2.98 0.513 22 ∗ 0.6 0.0050 7.30 ∗ 0.1 0.0025 2.13 20∆x
2-3 0.2 1.0 2.98 0.513 22 ∗ 0.6 0.0050 7.30 ∗ 0.1 0.0025 2.13 40∆x

3. Results

The computational domain was designed to accommodate 8 s of simulation before the
positive and negative characteristics were affected by the rigid upstream and downstream
boundaries. During the first 4 s, for both Froude numbers, the surge wave fronts were not
fully developed and, therefore, were excluded from the current analysis. The results were
obtained by using 100 ensembles between t = 4 s and 6 s, when the turbulence at the wave
front was fully developed.

3.1. Subgrid-Scale Resolution

One of the primary functions of an LES model is to dissipate the energy from the
resolved scales at an appropriate rate. A critical consideration for LES is the selection of the
filter size that can resolve the majority of large-scale energy-containing eddies. A general
and widely used method to estimate the quality of LES results was introduced by Pope [18],
who suggested that the resolved TKE, denoted by kres, should be more than 80% of the
total TKE to enable a well-resolved simulation. Matheou and Chung [27], on the other
hand, recommended resolving at least 90% of the TKE for the reliable prediction of the
mean statistics.
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To estimate the percentage of the resolved turbulent kinetic energy, kp, two param-
eters need to be determined first: the subgrid-scale TKE, kSGS, directly modeled using
Equation (6), and the resolved TKE, kres. The resolved TKE presents the energy in larger-
than-scale turbulent motion and is defined as:

kres =
1
2
(u′u′ + v′v′ + w′w′) (12)

where u
′
, v
′
, and w

′
are the resolved velocity perturbation components in the x-, y-, and

z-directions, respectively. Furthermore, u′u′ , v′v′ , and w′w′ are the normal stresses in the
Reynolds stress tensor. For a moving surge wave, with phase discontinuity at the surge
front, estimating the velocity perturbations requires the consideration of the transient na-
ture of the surge wave. The celerity of the surge waves here closely resembled the averaged
celerity estimated by the MOC. Therefore, to estimate the perturbation components, all
profiles were shifted with a spatial lag of xlag = c/t in the streamwise x-direction. All
profiles were shifted, and therefore, were projected to the vicinity of the gate at t = 0 s. The
details of this spatial projection are given in Appendix A. The percentage of resolved TKE,
kp, is calculated as:

kp =
kres

kres + kSGS
(13)

The VOF method accounts for both phases, and herein, the phase separation that
delineates the free-surface was identified at αw = 0.5. Splash and separation were not
accounted for in delineating the free-surface shown in Figure 2 in black. Figure 2a,b shows
larger-than-scale TKE, kres, for Frs = 1.71 and 2.13, respectively. Higher values in these
plots are observed around the surge front in both air and water, but this also spreads in
depth and extends between the surge heel and toe. Furthermore, kres peaks in the vicinity
of the surge toe for both Froude numbers. Existing laboratory experiments [28,29] have
also shown a sharp rise in the normal Reynolds stresses, u′u′ and v′v′ , as components of
the TKE, near the toe. Figure 2c,d shows the plots of the instantaneous subgrid-scale TKE,
kSGS, and exhibit darker colors and intensities around the toe and surge front. Due to the
higher kSGS around the toe, the ratio of resolved to total TKE was at the lowest value of
about 86% in this area. However, this ratio remained above the recommended value for
LES [18]. In the surge front, the ratio of kp remained consistently above 90%. This indicated
that the LES model resolved mostly 90% of the TKE. This was achieved by designing two
areas of refinement, in the surge propagation area (AR1) and further refinement across the
toe (AR2), where the shear layer formed. The kSGS transport equation does not treat the
near-wall, nor was the near-wall region refined to resolve the very small scales. Therefore,
this area had very low kp. However, as shown in the later sections, the lower envelope of
mixing in the breaking surge was not affected by the near-wall region, and therefore, this
did not impact the development of turbulent structures in the vicinity of the surge front.

3.2. Water Depth Perturbations

Figure 3a,b shows the instantaneous water surface profiles, all in grey, and the av-
eraged water surface profile in blue. Since the averaged water depth changes in the
x-direction, this spatially varied averaged water depth was used for normalization. The
magnitude of the normalized water surface perturbation, or the squared root mean square

(rms), h′rms
2/h

2
= h′2/h

2
, was calculated and is plotted in Figure 3c,d for Frs = 1.71

and 2.13 for T = 40∆x, respectively. The normalized water surface perturbation peaked

at h′rms
2/h

2
= 0.008 for Frs = 1.71 and reached 0.011 at the higher Froude number of

Frs = 2.13. Leng and Chanson [29] summarized several experimental works of both surge
wave and hydraulic jump studies about the relation between the Froude number, Frs, and
the maximum water depth perturbations, h

′
max. In general, h

′
max increases with Frs, and

our maximum water depth perturbation followed the same trend from Frs = 1.71 to 2.13.
In both cases, this peak was observed immediately behind the toe.
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Figure 2. Plots of (a,b) time and z-averaged kres; (c,d) kSGS at t = 4.2 s and z = 0.02 m; (e,f) time and z-averaged kp with
80% as the threshold, for Case 1 with Frs = 1.71 (left column) and Cases 2-3 with Frs = 2.13 (right column), respectively.
For Frs = 1.71, the averaged position of the surge toe is approximately observed at (x− ct)/d1 = 2.0, and the surge wave
extends to (x− ct)/d1 = 0.0. For Frs = 2.13, the toe is positioned at (x− ct)/d1 = 4.0, and the averaged profile of the surge
wave extends to (x− ct)/d1 = 0.0.

Higher moments of perturbation, skewness, Sφ, and kurtosis, Kφ, provide deeper
insight into the distribution of the perturbation and ultimately the physics of the flow.
The skewness is the third moment and kurtosis is the fourth moment of perturbation of
parameter φ, where φ can be velocity components, pressure, and water depth and are
defined as:

Sφ = (φ′3)/(φ′2)3/2; Kφ = (φ′4)/(φ′2)2 (14)

where φ′ = φ− φ. The skewness reveals information about the asymmetry of the pertur-
bation, while kurtosis provides information on the flatness of the perturbation distribution.
The skewness for a Gaussian distribution is around zero, and a positive skewness means
that the perturbation is more likely to take on large positive values than large negative
values. On the other hand, the kurtosis for a Gaussian distribution is around three. Per-
turbation measurements leading to a kurtosis lower than this value are mainly clustered
around the mean, whereas perturbation measurements dominated by intermittent extreme
events have a higher kurtosis.
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Figure 3. Normalized water surface perturbation analysis: (a,b) time and z-averaged wave surface,
where the blue line is the averaged water surface profile, h/d2, and the grey lines denote instantaneous

water surface profiles, h/d2; (c,d) root mean square (rms) of surface perturbation, h′rms
2/h

2
, h′ = h− h;

(e,f) skewness of h, Sh; (g,h) kurtosis of h, Kh, for Cases 1 with Frs = 1.71 (left column), and Cases 2-3
with Frs = 2.13 (right column), respectively.

Around the heel, the depth skewness remained close to zero for both Froude numbers,
as shown in Figure 3e,f. However, moving from the heel towards the toe, the skewness
started to rise and reached approximately 2.0 and 2.5 around the toe for Frs = 1.71 and
2.13, respectively. This showed the tendency of the water surface profile perturbation to
experience extreme positive events, where the instantaneous water surface most likely
exceeded the average profile. The water surface kurtosis profiles for both Froude numbers
are shown in Figure 3g,h. In the vicinity of the heel at (x− ct)/d1 = 0, the kurtosis was
Kh ≈ 3; however, it rose to above three close to the toe. This confirmed that the flow mainly
comprised intermittent extreme water depth perturbations around the toe.

3.3. Air Entrainment Profiles and Mixing Cones

Two mechanisms have been identified in the literature that contribute to the instability
and development of a highly turbulent front in a surge wave. These are the advective–
diffusion region and the breaking front [9]. The first instability is induced by the velocity
gradient at the surge toe [5] and the second by the phase discontinuity at the surge front.
The formation of this breaking region is independent of the inflow conditions and is
dependent on the surge height [30].

Figure 4a–d shows plots of the instantaneous air concentration distribution (the left
column Frs = 1.71 and the right column Frs = 2.13). The orange lines in these profiles
delineate the marginal zero value for eddy viscosity, νt = µt/ρ = 0.00001 m2/s. Along with
the water surface profiles, these lines provide an envelope where the mixing is confined.
In Figure 4e,f, the averaged air concentration and the upper and lower envelopes, ys and
yb, are plotted for Frs = 1.71 (left) and 2.13 (right). The averaged lower envelope of air
entrainment, yb, is plotted using both eddy viscosity and αw = 0.5. Both methods yielded
similar lower envelopes for both Froude numbers. Furthermore, the instantaneous and
averaged lower envelopes demonstrated the proximity of the shear layer to the rigid bed.
In all cases, this lower envelope developed at a depth, where the impact of the boundary
layer was not present. This evidently indicated that low kp values for the near the boundary
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region, shown in Figure 2e,f, had no effect on the development of the turbulent region
across the surge front, between the surge toe and the heel.

Figure 4. Normalized wave surface, νt mixing cone boundary, and air mixing cone boundary plots for: (a,b) at t = 4.0 s,
z = 0.2 m; (c,d) at t = 4.5 s, z = 0.2 m; (e,f) time and z-averaged; (g,h) αh, for Cases 1 with Frs = 1.71 (left column) and
Cases 2-3 with Frs = 2.13 (right column), respectively.

Instantaneous and averaged upper and lower bounds, as well as the air concentration
contours indicated that the extent of air entrainment grew with the Froude number, which
was previously reported by Wüthrich et al. [31]. To quantify the air entrainment across the
surge wave, the average air concentration, αh, is defined between the free-surface profile at
ys and the lower boundary of the mixing cone in the advective–diffusion region denoted
by yb:

αh =
ys

∑
yb

αa/
ys

∑
yb

αw (15)

The peak value for average air concentration, αh, shown in Figure 4h, occurred at
x− ct = 3.4d1 for Frs = 2.13, which coincided with the peak of surface perturbation plotted
in Figure 3d. This is supported by the plot of kres for this Froude number in Figure 2b. The
area of high larger-than-scale perturbation in Figure 2b intersects with the free-surface right
behind the toe, leading to substantial levels of air entrainment near the toe. However, the
contour implies that the area with intense resolved TKE, kres, deviated from the free-surface
moving upstream away from the toe. This plot also demonstrates that the intensity of the
resolved TKE reduced behind the toe. These phenomena combined led to rapid induction
of air entrainment close to the toe, and subsequently reduction in air entrainment, moving
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further upstream. A similar pattern was observed for Frs = 1.71. Chanson [32] conducted
laboratory experiments to study air entrainment in surge waves by generating dam-break
waves. They reported a very high air concentration ratio near the toe, which agrees with
our observation for αh.

Air concentration, αa, is also plotted against depth, vertical y coordinate, at multiple
locations between the surge toe and heel in Figure 5. Here, three instantaneous profiles, as
well as the averaged profiles are plotted. The air concentration pattern in depth in the shear
layer and breaking region has been reported in the literature for hydraulic jumps [9,33].
The air entrained at the toe was advected and diffused in the shear layer. The instantaneous
profiles often peaked at the depth of the shear layer, for instance for h/d2 = 0.42 at
(x − ct)/d1 = 3.505 (Figure 5c) and h/d2 = 0.48 at (x − ct)/d1 = 2.505 (Figure 5b), for
t = 4.25 s. While this trend was not observed at all times, the averaged profiles also
seemed to peak where the shear layer formed. The position of this local maximum occurred
at slightly higher depths as the profiles moved away from the toe, which is consistent
with data reported by [33]. Afterwards, αa grew with the depth and reached one at the
free-surface. This demonstrated the importance of the TKE across the shear layer in air
entrainment and the air distribution, as observed in Figure 4g,h.

Figure 5. Plots of instantaneous αa against h/d2 for t = 4.25 s, 4.50 s, 4.75 s, and averaged αa at (a)
(x− ct)/d1 = 1.505, (b) (x− ct)/d1 = 2.505, and (c) (x− ct)/d1 = 3.505 for Frs = 2.13 (Cases 2-3).

3.4. Velocity Perturbations and Quadrant Analysis

To quantify the turbulent structures behind breaking surge waves, the instantaneous
perturbations were extracted and are plotted in Figure 6. These plots were produced
at two depths: at y = d1 for points located behind the surge toe and for those located
at the midpoint of surge height at y = d1 + 0.5(d2 − d1). Standard Deviational Ellipses
(SDEs) are also plotted at 99% and 50%. SDEs delineate the spatial characteristics and
distribution of perturbations. The orientation of the SDEs was such that the semi-axes
align with the eigenvectors of the covariance matrix of the sample. The plotted SDEs
approximate the regions containing 99% and 50% of the perturbations in each perturbation
cloud. Quadrant analysis is one of the most conventional methods to identify the dominant
coherent structures in a turbulent flow [34,35].
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Figure 6. Velocity perturbation plots normalized by U2. (a,c) are u′/U2 vs. v′/U2; (b,d) are v′/U2 vs. w′/U2 at y = d1 and
= d1 + 0.5(d2 − d1), respectively. Column (1) is for Cases 2-1 with T = 10∆x and Frs = 2.13; Column (2) for Cases 2-2
with T = 20∆x and Frs = 2.13; Column (3) for Cases 2-3 with T = 40∆x and Frs = 2.13; and Column (4) for Cases 1 with
T = 40∆x and Frs = 1.71. The velocity perturbations are extracted for points located between (x− ct)/d1 = 0 and the
surge front.

In order for us to assess the proper periodic domain size in the z-direction, we con-
ducted the simulation for Frs = 2.13 for three domain sizes of T = 10∆x, 20∆x, and 40∆x,
in Cases 2-1, 2-2, and 2-3, respectively. The plotted perturbations in Figure 6 in Columns 1
to 3 represent the progression of perturbation as we expanded the domain in the z-direction.
As seen in the plot of v′/U2 against w′/U2 in T = 10∆x in Figure 6(b1), in this narrow
domain, v′/U2 was dominant over w′/U2. However, progressively, as we expanded the
domain, the SDEs became closer in shape to concentric circles, suggesting a comparable
magnitude for v′/U2 and w′/U2. From T = 20∆x to 40∆x, the impact of the domain width
became negligible, as shown in Figure 6(b2,b3). The structure of the perturbations became
invariant to the domain width at T = 40∆x. This width, therefore, was selected as the
optimal domain size to demonstrate the structure of perturbations in this paper.

The perturbations in the xy-plane at y = d1 and T = 40∆x, u′/U2 and v′/U2 are
plotted for Frs = 2.13 and 1.71 in Figure 6(a3,a4), respectively. The 99% and 50% confidence
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SDEs in both Froude numbers are inclined towards the second and the fourth quadrant. In
Quadrants 2 and 4, the product of perturbations in the x- and y-directions, u′v′, is negative.
This consequently led to a positive production of the TKE. The xy perturbation cloud
was dominated by sweeps (demonstrated by perturbations in Quadrant 4) and ejections
(Quadrant 2) [34]. A similar pattern emerged at different depths across the surge height, as
plotted for y = d1 + 0.5(d2 − d1) in Figure 6(c3,c4).

On the contrary, the yz perturbation cloud illustrated a different pattern. Figure 6(b3,b4)
shows the even distribution of perturbations in all four quadrants. All four mechanisms of
outward interactions (Quadrant 1), sweeps (Quadrant 2), inward interactions (Quadrant
3), and ejections (Quadrant 4) became equally significant. This indicated that the overall
product of perturbations in the yz-plane was zero, leading to no turbulent production.
A similar trend appeared at y = d1 + 0.5(d2 − d1), where the SDEs for v′/U2 versus
w′/U2 perturbations spread equally in all four quadrants, as illustrated in Figure 6(d3,d4).
Evidence arising from instability mechanisms is discussed in the following section to
substantiate this observation.

3.5. Q-Criterion Analysis and Relation to Production

The quadrant analysis was well supported by the vortex structure observed in the
breaking surge wave. Due to the complexity of the flow, with multiple instability-inducing
mechanisms, the plot of vorticity alone does not shed light on the vortical circulations, also
reported by Lubin and Glockner [15]. Instead, the Q-criterion was used to visualize the
formation, rolling, and merging of the coherent structures.

This criterion was introduced by Hunt et al. [36], and it is defined in terms of the
instantaneous velocity gradients. A positive value for the Q-criterion identifies rotation-
dominated regions of the flow, or vortices. Similarly, negative values are associated with
straining regions of the flow. Figure 7 is the plot of the Q-criterion and Q isosurfaces (at
Q = 2000) in the xy-plane for Frs = 2.13 and 1.71 for T = 40∆x. Figure 7a,b,e,f shows the
instantaneous Q-criterion contour plots, and Figure 7c,d,g,h shows the instantaneous Q
isosurfaces at Q = 2000. These plots outline the change of coherent structures in time for
two Froude numbers. Despite changes in the instantaneous distribution of Q, these plots
consistently show the accumulation of vortices adjacent to the toe and behind the breaking
surge front. The vortices were generated by the two instability mechanisms outlined earlier
and were advected behind the surge. Since the shear instability was in the xy-plane (the
gradient of the x-component of the velocity in the y-direction), the vortices in the vicinity
of the toe were expected to have a 2D structure. Similarly, the instability caused by the
depth discontinuity also occurred in the xy-plane (phase or depth gradient across the surge
front in the x-component). The velocity perturbation component in the z-direction, w′, was,
however, critical for fully cascading turbulent flow an comparable in size to the velocity
perturbation component in the y-direction, v′, as demonstrated in Figure 6b,d.

Figure 8 contains the instantaneous plots of the Q-criterion in the yz-plane. As evident
here, the coherent structures were present in the yz-plane. The width of the domain,
T = 40∆x, as shown in all instances for both Froude numbers of Frs = 1.71 in Figure 8a,b
and Frs = 2.13 in Figures 8c,d, was significantly larger than the scale of eddies formed in
the yz-plane. This ensured that the domain size did not suppress the perturbation growth
in the z-direction, and therefore, 3D structures were not suppressed. Despite their role in
the 3D structures, the yz-perturbations did not contribute to the production of turbulence
as discussed in the quadrant analysis.

To further illustrate the results presented above, a video demonstration of the evolu-
tion of the Q isosurfaces at Q = 2000 in time is available in the Supplementary Material for
both Froude numbers of Frs = 1.71 (Case 1) and 2.13 (Cases 2-3).
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Figure 7. Plots of the instantaneous Q-criterion contour and Q = 2000 isosurfaces on the xy-plane at z = 0.2 m. The
isosurfaces are colored with the resultant velocity. (a,b) are Q contours for t = 4.25 s; (e,f) for t = 4.75 s for Frs = 1.71 (left
column) and Frs = 2.13 (right column) for T = 40∆x. Similarly, (c,d) are isosurfaces for t = 4.25 s and (g,h) for t = 4.75 s for
Frs = 1.71 (left column) and Frs = 2.13 (right column), respectively.

Figure 8. Plots of the Q-criterion contour on the yz-plane at (x− ct)/d1 = 1.5 for Frs = 1.71 (Case 1) at (a) t = 4.25 s and
(b) t = 4.75 s. Similar Q contour plots are presented for Frs = 2.13 (Cases 2-3) at (c) t = 4.25 s and (d) t = 4.75 s.
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4. Conclusions

In the scope of this paper, we investigated the turbulent structures across breaking
surge waves, highlighted the 3D behavior of velocity perturbations, and examined their
linkage with the instability mechanisms in breaking surge waves. We conducted a series of
numerical simulations of breaking surge waves with Froude numbers of Frs = 1.71 and
2.13, using a large eddy simulation three-dimensional model. By implementing a Volume
Of Fluid (VOF) solver, we accounted for air entrainment and the linkage with the coherent
structures across the surge wave. In a highly turbulent breaking surge, two mechanisms
contributed to the instability: the formation of the shear layer, due to the velocity gradient,
at the toe, and wave breaking at the air–water interface due to phase discontinuity. Our
analysis of the water surface perturbation patterns, including higher moments, indicated
extreme water surface perturbations near the toe. This was attributed to the steep wave
front and the high level of Turbulent Kinetic Energy (TKE) at the toe. The simulation
also produced air concentration profiles consistent with the data obtained from existing
laboratory observations.

Furthermore, our analysis highlighted the role of spanwise perturbations in the devel-
opment of fully developed turbulent structures behind the surge wave. Using a periodic
boundary condition, we ensured that the domain size did not constrain the growth of
spanwise perturbations. The Standard Deviational Ellipses (SDEs) in the xy velocity per-
turbation cloud for both Froude numbers were oriented towards the second and fourth
quadrants, leading to positive TKE production. The yz velocity perturbations demonstrated
that the magnitude of the spanwise perturbations were comparable to other perturbation
components. The SDEs, however, suggested that yz perturbations do not contribute to
the TKE production. The appearance of the TKE production in the xy-plane alone was
attributed to the formation of both instability mechanisms in this plane. Our perturbation
analysis also illustrated the role of spanwise perturbation in the distribution of TKE and
the evolution of the three-dimensional turbulent structure in a breaking surge wave. To
illustrate the three-dimensional structure, further work is required to study the isotropic
behaviors near the surge front, behind the surge, and in the toe region.

Supplementary Materials: Supplementary videos are available online at https://www.mdpi.com/
article/10.3390/fluids6120422/s1.

Author Contributions: Conceptualization, S.K.; Introduction and Methodology S.K. and Z.L.; numer-
ical simulation, Z.L.; formal data analysis, Z.L. and A.V.; discussion, S.K. and Z.L.; writing—original
draft preparation, Z.L.; writing—review and editing, S.K.; visualization, Z.L. and A.V.; supervision,
S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Sciences and Engineering Research Council of
Canada (Grant No. RGPIN-2020-06101). We would also like to acknowledge the support from Mitacs
Globalink Research Internship for providing the internship opportunity to A.V.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Ensemble Averaging

The surge front is transient and moves with a celerity that is approximated by the
Method of Characteristics (MOC). The ensembles, therefore, have a space lag, xlag, moving
with surge wave celerity, c. The ensemble-averaged results were obtained by using 100
ensembles between t = 4 s and 6 s, when the turbulence at the wave front was fully
developed. To capture this transient nature, a 4 m rectangular domain spanning from
x1 = 35 m to x2 = 39 m was selected at t = 4.00 s. The domain boundaries in the x-
direction moved with the surge wave celerity of c, estimated from the MOC. In cases where
the shifted boundaries did not overlap with the grid alignment, a weighted algorithm was

https://www.mdpi.com/article/10.3390/fluids6120422/s1
https://www.mdpi.com/article/10.3390/fluids6120422/s1
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applied. The weight factors were determined based on the distance to the two adjacent
grid points. This is demonstrated in Figure A1 for t = 4.05 s and Frs = 2.13, where the
celerity is c = 2.9835 m/s.

Figure A1. Illustration of the weighted algorithm at t = 4.05 s for c = 2.9835 m/s and a uniform grid of ∆x = 0.005 m.
The boundaries of the ensemble box are located at x1 = 35 m and x2 = 39 m at t = 4.00 s. The weighted factors, W, were
calculated based on the vicinity of the shifted domain to the nearest grid point.
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