Optimization and Characterization of Chitosan Enzymolysis by Pepsin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chitosan Hydrolysis
2.3. Characterization of Chitosan
3. Results and Discussion
3.1. Enzymolysis of Chitosan by RSM
3.1.1. Box–Behnken Design Analysis
3.1.2. Interactions between the Variables
3.1.3. Optimization Analysis
3.2. Enzymolysis Kinetic
3.2.1. Effect of Chitosan Substrate Concentration
3.2.2. Kinetic Constants
3.3. The Structural Properties of the LMW Chitosan
3.3.1. FTIR Analysis
3.3.2. UV-VIS Analysis
3.4.3. SEM Analysis
3.4.4. Depolymerization Degree, Viscosity, Molecular Weight and Polydispersity Index Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xia, W.; Liu, P.; Liu, J. Advance in chitosan hydrolysis by non-specific cellulases. Bioresour. Technol. 2008, 99, 6751–6762. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, C.; Tang, C.; Yin, C. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials 2011, 32, 4630–4638. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Varadaraj, M.C.; Gowda, L.R.; Tharanathan, R.N. Low molecular weight chitosan-preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta 2007, 1771, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Wang, S.; Shi, Y.; Yang, Y. Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis. Process. Biochem. 2013, 48, 614–619. [Google Scholar] [CrossRef]
- Wu, S. Preparation of water soluble chitosan by hydrolysis with commercial α-amylase containing chitosanase activity. Food Chem. 2011, 128, 769–772. [Google Scholar] [CrossRef]
- Kumar, A.V.; Varadaraj, M.C.; Gowda, L.R.; Tharanathan, R.N. Low molecular weight chitosan-preparation with aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules 2007, 8, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Ilyina, A.V.; Tikhonov, V.E.; Albulov, A.I.; Varlamov, V.P. Enzymic preparation of acid-free-water-soluble chitosan. Process. Biochem. 2000, 35, 563–568. [Google Scholar] [CrossRef]
- Nah, J.W.; Jang, M.K. Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 3796–3803. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, I.K.; Nah, J.W.; Choi, Y.J.; Cho, C.S. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 2004, 25, 3783–3792. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.K.; Jeong, Y.I.; Nah, J.W. Characterization and preparation of core-shell type nanoparticle for encapsulation of anticancer drug. Colloids Surf. B Biointerfaces 2010, 81, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, V.E.; Stepnova, E.A.; Babak, V.G.; Yamskov, I.A.; Palma-Guerrero, J.; Jansson, H.B.; Lopez-Llorca, L.V.; Salinas, J.; Gerasimenkoc, D.V.; Avdienko, I.D.; et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr. Polym. 2006, 64, 66–72. [Google Scholar] [CrossRef]
- Roncal, T.; Oviedo, A.; de Armentia, I.L.; Fernández, L.; Villarán, M.C. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007, 342, 2750–2756. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.D.; Zeng, H.Y.; Gohi, B.F.C.A.; Li, Y.Q. Enzymolysis of Chitosan by Papain and Its Kinetics. Carbohydr. Polym. 2016, 135, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Tanyildizi, M.S.; Özer, D.; Elibol, M. Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process. Biochem. 2005, 40, 2291–2296. [Google Scholar] [CrossRef]
- Alim, M.A.; Lee, J.H.; Akoh, C.C.; Choi, M.S.; Shin, J.A.J.; Lee, K.T. Enzymatic transesterification of fractionated rice bran oil with conjugated linoleic acid: Optimization by response surface methodology. LWT Food Sci. Technol. 2008, 41, 764–770. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Kusvuran, E.; Irmak, S.; Yavuz, H.I.; Samil, A.; Erbatur, O. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye. J. Hazard. Mater. 2005, 119, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Dona, A.C.; Pages, G.; Gilbert, R.G.; Kuchel, P.W. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 2010, 80, 599–617. [Google Scholar] [CrossRef]
- Ayhan, F.; Ayhan, H.; Pişkin, E.; Tanyolac, A. Optimization of urease immobilization onto non-porous HEMA incorporated poly (EGDMA) microbeads and estimation of kinetic parameters. Bioresour. Technol. 2002, 81, 131–140. [Google Scholar] [CrossRef]
- Nuhoglum, A.; Yalcin, B. Modeling of phenol removal in a batch reactor. Process. Biochem. 2005, 40, 1233–1239. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, W.; He, Y.W.Y.; Wu, T. Oxidative degradation of chitosan to the low molecular water-soluble chitosan over peroxotungstate as chemical scissors. PLoS ONE 2014, 9, e100743. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Symbols | Units | Code Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
pH | P | 2 | 4 | 6 | |
Temperature | T | °C | 30 | 50 | 70 |
Enzyme concentration | E | mg/L | 50 | 100 | 150 |
Chitosan concentration | C | g/L | 5.0 | 10.0 | 15.0 |
Run | Experimental Variables | Response Y (%) | ||||
---|---|---|---|---|---|---|
P | T (°C) | E (mg/L) | C (g/L) | Expt. | Predicted | |
1 | 6.00 | 30.00 | 100.00 | 10.00 | 39.76 | 40.092 |
2 | 4.00 | 50.00 | 100.00 | 10.00 | 89.58 | 91.232 |
3 | 6.00 | 50.00 | 100.00 | 15.00 | 30.06 | 27.680 |
4 | 2.00 | 70.00 | 100.00 | 10.00 | 13.52 | 13.202 |
5 | 4.00 | 70.00 | 150.00 | 10.00 | 43.74 | 43.440 |
6 | 4.00 | 50.00 | 50.00 | 5.00 | 32.58 | 28.142 |
7 | 2.00 | 50.00 | 50.00 | 10.00 | 4.950 | 8.538 |
8 | 4.00 | 50.00 | 100.00 | 10.00 | 92.28 | 91.232 |
9 | 6.00 | 50.00 | 100.00 | 5.00 | 40.23 | 38.320 |
10 | 6.00 | 50.00 | 150.00 | 10.00 | 44.78 | 42.515 |
11 | 4.00 | 30.00 | 150.00 | 10.00 | 47.58 | 45.598 |
12 | 2.00 | 50.00 | 150.00 | 10.00 | 45.02 | 40.158 |
13 | 4.00 | 50.00 | 100.00 | 10.00 | 89.94 | 91.232 |
14 | 4.00 | 50.00 | 150.00 | 5.00 | 30.48 | 35.437 |
15 | 4.00 | 50.00 | 50.00 | 15.00 | 15.91 | 10.967 |
16 | 6.00 | 50.00 | 50.00 | 10.00 | 24.59 | 30.775 |
17 | 4.00 | 50.00 | 100.00 | 10.00 | 90.14 | 91.232 |
18 | 4.00 | 70.00 | 50.00 | 10.00 | 8.680 | 9.325 |
19 | 6.00 | 70.00 | 100.00 | 10.00 | 32.44 | 32.478 |
20 | 4.00 | 50.00 | 150.00 | 15.00 | 42.58 | 47.032 |
21 | 4.00 | 70.00 | 100.00 | 5.00 | 25.49 | 24.970 |
22 | 4.00 | 30.00 | 100.00 | 15.00 | 34.93 | 36.773 |
23 | 2.00 | 50.00 | 100.00 | 5.00 | 17.13 | 18.173 |
24 | 4.00 | 70.00 | 100.00 | 15.00 | 20.05 | 20.505 |
25 | 4.00 | 30.00 | 50.00 | 10.00 | 37.39 | 36.353 |
26 | 2.00 | 30.00 | 100.00 | 10.00 | 34.80 | 34.775 |
27 | 4.00 | 50.00 | 100.00 | 10.00 | 94.22 | 91.232 |
28 | 2.00 | 50.00 | 100.00 | 15.00 | 22.66 | 23.233 |
29 | 4.00 | 30.00 | 100.00 | 5.00 | 37.02 | 37.888 |
Source | Sum of Squares | DF | Mean Square | F | p-Value |
---|---|---|---|---|---|
Model | 18,573.62 | 14 | 1326.69 | 90.55 | <0.0001 |
P | 453.62 | 1 | 453.62 | 30.96 | <0.0001 |
T | 638.90 | 1 | 638.90 | 43.61 | <0.0001 |
E | 1410.07 | 1 | 1410.07 | 96.24 | <0.0001 |
C | 23.35 | 1 | 23.35 | 1.59 | 0.2274 |
PT | 48.72 | 1 | 48.72 | 3.33 | 0.0896 |
PE | 98.80 | 1 | 98.80 | 6.74 | 0.0211 |
PC | 61.62 | 1 | 61.62 | 4.21 | 0.0595 |
TE | 154.63 | 1 | 154.63 | 10.55 | 0.0058 |
TC | 2.81 | 1 | 2.81 | 0.19 | 0.6683 |
EC | 206.93 | 1 | 206.93 | 14.12 | 0.0021 |
P 2 | 6699.96 | 1 | 6699.96 | 457.30 | <0.0001 |
T2 | 5438.75 | 1 | 5438.75 | 371.22 | <0.0001 |
E2 | 5304.36 | 1 | 5304.36 | 362.05 | <0.0001 |
C2 | 6742.76 | 1 | 6742.76 | 460.22 | <0.0001 |
Residual | 205.12 | 14 | 14.65 | ||
Lack of Fit | 189.50 | 10 | 18.95 | 4.85 | 0.0708 |
Pure Error | 15.62 | 4 | 3.90 | ||
Cor Total | 18,778.73 | 28 | |||
R2 | 0.9891 | ||||
Adjusted R2 | 0.9782 | ||||
Predicted R2 | 0.9406 | ||||
Adeq precision | 30.039 | ||||
CV | 9.39 |
Chitosan Concentration (g/L) | First-Order Qt = Qe(1 − exp(−k1t)) * | Second-Order t/Qt = 1/(k2Qe2) + t/Qe * | |||
---|---|---|---|---|---|
k1 (1/min) | R2 | k2 (L/(g·min)) | H (g/(L·min)) | R2 | |
2.0 | 0.00946 | 0.99543 | 0.00251 | 2.48935 | 0.99632 |
6.0 | 0.01966 | 0.99522 | 0.00353 | 4.62264 | 0.99618 |
8.0 | 0.0301 | 0.99593 | 0.00426 | 7.15633 | 0.99904 |
10.0 | 0.04086 | 0.99465 | 0.00441 | 11.07718 | 0.99954 |
12.0 | 0.03626 | 0.99513 | 0.00425 | 9.54351 | 0.99935 |
15.0 | 0.03109 | 0.99857 | 0.00406 | 7.76309 | 0.99813 |
18.0 | 0.02874 | 0.99956 | 0.00374 | 7.48846 | 0.99882 |
Source | Mw (×103) | DD (%) | Viscosity Decrease (%) | Yield (%) |
---|---|---|---|---|
Native | 300 | - | - | - |
CH1 | 195.4 | 74.60 | 86 | - |
CH2 | 65.9 | 92.00 | 93 | - |
Monomers 2 | - | - | - | n.t. |
LMWC 1 | 25–20 | - | - | 28.26 |
LMWC 2 | 13–9 | - | - | 35.04 |
COS 1 | 90–85 | - | - | 71.74 |
COS 2 | 65–50 | - | - | 64.94 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gohi, B.F.C.A.; Zeng, H.-Y.; Pan, A.D. Optimization and Characterization of Chitosan Enzymolysis by Pepsin. Bioengineering 2016, 3, 17. https://doi.org/10.3390/bioengineering3030017
Gohi BFCA, Zeng H-Y, Pan AD. Optimization and Characterization of Chitosan Enzymolysis by Pepsin. Bioengineering. 2016; 3(3):17. https://doi.org/10.3390/bioengineering3030017
Chicago/Turabian StyleGohi, Bi Foua Claude Alain, Hong-Yan Zeng, and A Dan Pan. 2016. "Optimization and Characterization of Chitosan Enzymolysis by Pepsin" Bioengineering 3, no. 3: 17. https://doi.org/10.3390/bioengineering3030017
APA StyleGohi, B. F. C. A., Zeng, H.-Y., & Pan, A. D. (2016). Optimization and Characterization of Chitosan Enzymolysis by Pepsin. Bioengineering, 3(3), 17. https://doi.org/10.3390/bioengineering3030017