A Hybrid Convolutional–Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson’s Disease Detection
Abstract
1. Introduction
- The incorporation of transformer blocks to identify critical temporal features linked to PD-related EEG anomalies;
- The enhanced extraction of spatial and temporal features through the combined strengths of CNNs, transformers, and LSTMs;
- Improved model adaptability across diverse datasets, driven by transformer-enabled contextual analysis.
2. Materials and Methods
2.1. Dataset
Algorithm 1 Feature extraction and model training |
Require: EEG data , number of frames N, number of channels Ensure: Model performance metrics: accuracy, precision, recall, and F1-score
|
2.2. Features Extraction
2.3. Data Augmentation Strategy
2.4. The Proposed CTESM
3. Results and Discussion
3.1. Statistical Analysis of Raw and Extracted Features
3.2. Model Performance Analysis
3.3. Ablation Experiments and Performance Benchmarking
3.4. Performance Comparison
3.5. Discussion and Future Direction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weintraub, D.; Aarsland, D.; Chaudhuri, K.R.; Dobkin, R.D.; Leentjens, A.F.; Rodriguez-Violante, M.; Schrag, A. The neuropsychiatry of Parkinson’s disease: Advances and challenges. Lancet Neurol. 2022, 21, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulos, I.C.; Malli, F.; Sinani, O.; Gourgoulianis, K.I.; Xiromerisiou, G. Worldwide trends in mortality related to Parkinson’s disease in the period of 1994–2019: Analysis of vital registration data from the WHO Mortality Database. Front. Neurol. 2022, 13, 956440. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Panicker, N.; Ge, P.; Dawson, V.L.; Dawson, T.M. The cell biology of Parkinson’s disease. J. Cell Biol. 2021, 220, e202012095. [Google Scholar] [CrossRef]
- Little, S.; Brown, P. The functional role of beta oscillations in Parkinson’s disease. Park. Relat. Disord. 2014, 20, S44–S48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Han, X.; Qiu, S.; Li, T.; Chu, C.; Wang, L.; Wang, J.; Zhang, Z.; Wang, R.; Yang, M.; et al. Analysis of brain functional network based on EEG signals for early-stage Parkinson’s disease detection. IEEE Access 2022, 10, 21347–21358. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Wang, J.; Hou, Z.G. Simultaneous EEG-fNIRS data classification through selective channel representation and spectrogram imaging. IEEE J. Transl. Eng. Health Med. 2024, 12, 600–612. [Google Scholar] [CrossRef]
- Shirahige, L.; Berenguer-Rocha, M.; Mendonça, S.; Rocha, S.; Rodrigues, M.C.; Monte-Silva, K. Quantitative electroencephalography characteristics for Parkinson’s disease: A systematic review. J. Park. Dis. 2020, 10, 455–470. [Google Scholar] [CrossRef]
- Qiu, L.; Li, J.; Zhong, L.; Feng, W.; Zhou, C.; Pan, J. A novel EEG-based Parkinson’s disease detection model using multiscale convolutional prototype networks. IEEE Trans. Instrum. Meas. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Srinivasan, S.; Ramadass, P.; Mathivanan, S.K.; Panneer Selvam, K.; Shivahare, B.D.; Shah, M.A. Detection of Parkinson disease using multiclass machine learning approach. Sci. Rep. 2024, 14, 13813. [Google Scholar] [CrossRef]
- Govindu, A.; Palwe, S. Early detection of Parkinson’s disease using machine learning. Procedia Comput. Sci. 2023, 218, 249–261. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Bunterngchit, Y. A comparative study of machine learning models for Parkinson’s disease detection. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 465–469. [Google Scholar] [CrossRef]
- Bhatt, K.; Jayanthi, N.; Kumar, M. Automatic detection of Parkinson’s disease using EEG signals: A machine learning approach. In Proceedings of the 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 14–16 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Haloi, R.; Hazarika, J.; Chanda, D. Selection of appropriate statistical features of EEG signals for detection of Parkinson’s disease. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 761–764. [Google Scholar] [CrossRef]
- Suuronen, I.; Airola, A.; Pahikkala, T.; Murtojärvi, M.; Kaasinen, V.; Railo, H. Budget-based classification of Parkinson’s disease from resting state EEG. IEEE J. Biomed. Health Inform. 2023, 27, 3740–3747. [Google Scholar] [CrossRef]
- Nguyen, T.N.Q.; Vo, H.T.T.; Van Huynh, T. Ensemble method in Parkinson’s disease classification via EEG signals. In Proceedings of the 2023 RIVF International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 23–25 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 418–423. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Wang, J.; Su, J.; Wang, Y.; Liu, S.; Hou, Z.G. AMFN: Autoencoder-led multimodal fusion network for EEG–fNIRS classification. Procedia Comput. Sci. 2024, 250, 8–14. [Google Scholar] [CrossRef]
- Alissa, M.; Lones, M.A.; Cosgrove, J.; Alty, J.E.; Jamieson, S.; Smith, S.L.; Vallejo, M. Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput. Appl. 2021, 34, 1433–1453. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Baniata, L.H.; Baniata, M.H.; ALDabbas, A.; Khair, M.A.; Chearanai, T.; Kang, S. GACL-Net: Hybrid deep learning framework for accurate motor imagery classification in stroke rehabilitation. Comput. Mater. Contin. 2025, 83, 517–536. [Google Scholar] [CrossRef]
- Gunduz, H. An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification. Biomed. Signal Process. Control 2021, 66, 102452. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Chearanai, T.; Bunterngchit, Y. Advanced EEG-based classification of Alzheimer’s disease using CNN-LSTM-attention architecture. In Proceedings of the 2024 22nd International Conference on Research and Education in Mechatronics (REM), Amman, Jordan, 24–26 September 2024; pp. 107–112. [Google Scholar] [CrossRef]
- Lee, S.; Hussein, R.; McKeown, M.J. A deep convolutional-recurrent neural network architecture for Parkinson’s disease EEG classification. In Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Pei, G.; Yan, T. An EEG-based approach for Parkinson’s disease diagnosis using capsule network. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1641–1645. [Google Scholar] [CrossRef]
- Nayana, G.; Karki, M.V. Deep learning techniques for Parkinson’s detection Using EEG signals analysis. In Proceedings of the 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), Bengaluru, India, 1–2 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Srikanth, N.B.; Priya, S.J.; Subathra, M.S.P. Detection of Parkinson’s disease from EEG Signals with EEMD using machine learning and deep learning techniques. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 274–279. [Google Scholar] [CrossRef]
- Weyhenmeyer, J.; Hernandez, M.E.; Lainscsek, C.; Poizner, H.; Sejnowski, T.J. Multimodal classification of Parkinson’s disease using delay differential analysis. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2868–2875. [Google Scholar] [CrossRef]
- Lyu, T.; Guo, H. BGCN: An EEG-based graphical classification method for Parkinson’s disease diagnosis with heuristic functional connectivity speculation. In Proceedings of the 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), Baltimore, MD, USA, 24–27 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Hamidi, A.; Mohamed-Pour, K.; Yousefi, M. Forged channel: A breakthrough approach for accurate Parkinson’s disease classification using leave-one-subject-out cross-validation. In Proceedings of the 2024 32nd International Conference on Electrical Engineering (ICEE), Tehran, Iran, 14–16 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Rockhill, A.P.; Jackson, N.; George, J.; Aron, A.; Swann, N.C. UC San Diego Resting State EEG Data from Patients with Parkinson’s Disease. 2021. Available online: https://openneuro.org/datasets/ds002778/versions/1.0.5 (accessed on 27 April 2025).
- Jackson, N.; Cole, S.R.; Voytek, B.; Swann, N.C. Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography. eNeuro 2019, 6, ENEURO.0151-19.2019. [Google Scholar] [CrossRef]
- Swann, N.C.; de Hemptinne, C.; Aron, A.R.; Ostrem, J.L.; Knight, R.T.; Starr, P.A. Elevated synchrony in Parkinson disease detected with electroencephalography. Ann. Neurol. 2015, 78, 742–750. [Google Scholar] [CrossRef]
- George, J.S.; Strunk, J.; Mak-McCully, R.; Houser, M.; Poizner, H.; Aron, A.R. Dopaminergic therapy in Parkinson’s disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. Neuroimage Clin. 2013, 3, 261–270. [Google Scholar] [CrossRef]
- Pernet, C.R.; Appelhoff, S.; Gorgolewski, K.J.; Flandin, G.; Phillips, C.; Delorme, A.; Oostenveld, R. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data 2019, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Parhi, K.K. Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Bunterngchit, C.; Wang, J.; Chearanai, T.; Hou, Z.G. Enhanced EEG-fNIRS classification through concatenated convolutional neural network with band analysis. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), Koh Samui, Thailand, 4–9 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Aljalal, M.; Aldosari, S.A.; Molinas, M.; AlSharabi, K.; Alturki, F.A. Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques. Sci. Rep. 2022, 12, 22547. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern. Biomed. Eng. 2021, 41, 679–689. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, J.; Zhang, R. EEG analysis of Parkinson’s disease using time–frequency analysis and deep learning. Biomed. Signal Process. Control 2022, 78, 103883. [Google Scholar] [CrossRef]
- Devnath, L.; Kumer, S.; Nath, D.; Das, A.K.; Islam, M.R. Selection of wavelet and thresholding rule for denoising the ECG signals. Ann. Pure Appl. Math. 2015, 10, 65–73. [Google Scholar]
- Pappalettera, C.; Miraglia, F.; Cotelli, M.; Rossini, P.M.; Vecchio, F. Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy. GeroScience 2022, 44, 1599–1607. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.J.; Khan, W.; Liatsis, P. A new machine learning based approach to predict freezing of gait. Pattern Recognit. Lett. 2020, 140, 119–126. [Google Scholar] [CrossRef]
- Bunterngchit, C.; Wang, J.; Su, J.; Wang, Y.; Liu, S.; Hou, Z.G. Temporal attention fusion network with custom loss function for EEG–fNIRS classification. J. Neural Eng. 2024, 21, 066016. [Google Scholar] [CrossRef]
- Li, K.; Ao, B.; Wu, X.; Wen, Q.; Ul Haq, E.; Yin, J. Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model. Biotechnol. Genet. Eng. Rev. 2024, 40, 2577–2596. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.F.; Dasgupta, S.; Mudumbai, R.; Singh, A.; Cavanagh, J.F.; Narayanan, N.S. Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Park. Relat. Disord. 2020, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
Attribute | Description |
---|---|
Participants | 31 individuals: 15 with PD (mean age 63.2 ± 8.2 years) and 16 HC (mean age: 63.5 ± 9.6 years) |
Modality | Resting-state EEG |
Sampling rate | 500 Hz |
Recording duration | 5 to 10 min per session |
Channels | 40 electrodes (10–20 systems) |
Output classes | PD and HC classification |
Parameter | Value |
---|---|
Epochs | 50 |
Batch size | 32 |
Train–test split | 80% and 20% |
Validation split | 10% |
Optimizer | Adam |
Loss function | Categorical cross-entropy |
Training metric | Accuracy |
Testing metrics | Accuracy, precision, recall, and F1-score |
Component | Description |
---|---|
CNN-extracted features | Capture spatial patterns across EEG channels, including frequency-specific activations and electrode correlations. |
Transformer input | CNN feature maps reshaped into sequence format . |
Query-key-value projection | Calculated as , , , with learnable parameters . |
Attention formula | . |
Multi-head attention | Parallel attention heads process inputs, with outputs concatenated and projected. |
Transformer-extracted features | Capture temporal attention across EEG time windows, emphasizing contextually relevant neural activity changes. |
LSTM-extracted features | Model sequential dependencies and temporal evolution, capturing rhythmic and long-term PD-related neural trends. |
Model role | Facilitates the learning of long-range dependencies and frequency-specific EEG patterns. |
Channel | t-Test | ANOVA | Channel | t-Test | ANOVA | Channel | t-Test | ANOVA | Channel | t-Test | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.8786 | 0.8787 | 11 | 0.6720 | 0.6791 | 21 | 0.6407 | 0.6435 | 31 | 0.1257 | 0.0966 |
2 | 0.5376 | 0.4924 | 12 | 0.4453 | 0.3778 | 22 | 0.7896 | 0.7798 | 32 | 0.7076 | 0.7151 |
3 | 0.0310 | 0.0106 | 13 | 0.6611 | 0.6301 | 23 | 0.4836 | 0.4711 | 33 | 0.4185 | 0.4172 |
4 | 0.4213 | 0.3199 | 14 | 0.3137 | 0.2932 | 24 | 0.1887 | 0.2474 | 34 | 0.1493 | 0.1575 |
5 | 0.4280 | 0.3710 | 15 | 0.1010 | 0.1037 | 25 | 0.7716 | 0.7772 | 35 | 0.7444 | 0.7426 |
6 | 0.6031 | 0.5952 | 16 | 0.1372 | 0.1180 | 26 | 0.6583 | 0.6374 | 36 | 0.1755 | 0.1654 |
7 | 0.5447 | 0.5623 | 17 | 0.6015 | 0.5898 | 27 | 0.7412 | 0.7363 | 37 | 0.0602 | 0.0314 |
8 | 0.3361 | 0.2463 | 18 | 0.1611 | 0.1769 | 28 | 0.5017 | 0.4781 | 38 | 0.7718 | 0.7774 |
9 | 0.5205 | 0.5254 | 19 | 0.3729 | 0.4472 | 29 | 0.8472 | 0.8448 | 39 | 0.2659 | 0.2735 |
10 | 0.6203 | 0.6407 | 20 | 0.2521 | 0.1982 | 30 | 0.3772 | 0.3801 | 40 | 0.4388 | 0.4271 |
Metric | Dataset 2 | Ablation 1 | Ablation 2 |
---|---|---|---|
Accuracy (%) | 99.9 | 97.1 | 98.7 |
Precision (%) | 99.9 | 97.2 | 98.6 |
Recall (%) | 99.9 | 97.5 | 98.3 |
F1-score (%) | 99.9 | 96.4 | 98.5 |
Method | Features | Accuracy (%) | Dataset |
---|---|---|---|
Decision tree [15] | Statistical features and Hjorth parameters | 98 | Dataset 1 |
Budget-based classification [17] | Sample entropy and channel selection optimization | 76 | 89 PD and 89 HC (3 datasets) |
ANN with DWT [18] | DWT for multi-band features | 88.5 | Dataset 2 |
CNN-LSTM [24] | Spatial and sequential EEG features | 96.9 | 20 PD and 22 HC |
Capsule network [25] | Spatial hierarchies within EEG data | 89.34 | 55 PD and 30 HC |
CNN [26] | Mel spectrogram transformed EEG | 97 | Dataset 1 |
CNN-DNN [27] | EEMD-based EEG features | 98 | Dataset 1 |
GCN [29] | Functional connectivity graphs | 95.59 | Dataset 2 |
Forged channel with CNN [30] | Smoothed pseudo Wigner-Ville distribution | 90.32 | Dataset 1 |
The proposed CTESM | Spectral, temporal, and statistical features | 99.7 & 99.9 | Datasets 1 and 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunterngchit, C.; Baniata, L.H.; Albayati, H.; Baniata, M.H.; Alharbi, K.; Alshammari, F.H.; Kang, S. A Hybrid Convolutional–Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson’s Disease Detection. Bioengineering 2025, 12, 583. https://doi.org/10.3390/bioengineering12060583
Bunterngchit C, Baniata LH, Albayati H, Baniata MH, Alharbi K, Alshammari FH, Kang S. A Hybrid Convolutional–Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson’s Disease Detection. Bioengineering. 2025; 12(6):583. https://doi.org/10.3390/bioengineering12060583
Chicago/Turabian StyleBunterngchit, Chayut, Laith H. Baniata, Hayder Albayati, Mohammad H. Baniata, Khalid Alharbi, Fanar Hamad Alshammari, and Sangwoo Kang. 2025. "A Hybrid Convolutional–Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson’s Disease Detection" Bioengineering 12, no. 6: 583. https://doi.org/10.3390/bioengineering12060583
APA StyleBunterngchit, C., Baniata, L. H., Albayati, H., Baniata, M. H., Alharbi, K., Alshammari, F. H., & Kang, S. (2025). A Hybrid Convolutional–Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson’s Disease Detection. Bioengineering, 12(6), 583. https://doi.org/10.3390/bioengineering12060583