Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Samples
2.3. Tocopherols and Tocotrienols Determination by NP-HPLC-FLD
2.4. Phenols Determination by RP-HPLC-PDA/MS
2.5. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Multivariate Statistical Analysis
3.1.1. HCA (Hierarchical Cluster Analysis)
3.1.2. PCA (Principal Component Analysis)
3.1.3. k-NN (k-Nearest Neighbors)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission Website, News 4 February 2020. Available online: https://ec.europa.eu/info/news/producing-69-worlds-production-eu-largest-producer-olive-oil-2020-feb-04_en (accessed on 4 June 2020).
- European Commission Website, Olive Oil, an Overview of the Production and Marketing of Olive Oil in the EU. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/olive-oil (accessed on 4 June 2020).
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, G.; Pesca, M.S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for Vitamin E as α-Tocopherol. EFSA J. 2015, 13, 4149. Available online: www.efsa.europa.eu/efsajournal (accessed on 25 May 2020). [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. Available online: www.efsa.europa.eu/efsajournal (accessed on 25 May 2020). [CrossRef]
- Alves, F.C.G.B.S.; Coqueiro, A.; Março, P.H.; Valderrama, P. Evaluation of olive oils from the Mediterranean region by UV–Vis spectroscopy and Independent Component Analysis. Food Chem. 2019, 273, 124–129. [Google Scholar] [CrossRef]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Brigelius-Flohé, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Gallina-Toschi, T.; Fernàndez-Gutirrez, A. Analytical determination of polyphenols in olive oils. J. Sep. Sci. 2005, 28, 837–858. [Google Scholar] [CrossRef]
- Buettner, G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef]
- Sordini, B.; Veneziani, G.; Servili, M.; Esposto, S.; Selvaggini, R.; Lorefice, A.; Taticchi, A. A quanti-qualitative study of a phenolic extract as a natural antioxidant in the frying processes. Food Chem. 2019, 279, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rico, A.; Fregapane, G.; Desamparados Salvador, M. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of deep eutectic solvents for the extraction of phenolic compounds from extra-virgin olive oil. Electrophoresis 2020. [Google Scholar] [CrossRef]
- Olmo-García, L.; Polari, J.J.; Li, X.; Bajoub, A.; Fernández-Gutiérrez, A.; Wang, S.C.; Carrasco-Pancorbo, A. Deep insight into the minor fraction of virgin olive oil by using LC-MS and GC-MS multi-class methodologies. Food Chem. 2018, 261, 184–193. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Nenadis, N.; Mastralexi, A.; Servili, M.; Butinar, B.; Vichi, S.; Winkelmann, O.; García-González, D.L.; Gallina Toschi, T. Toward a harmonized and standardized protocol for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO). The pros of a fit for the purpose ultra high performance liquid chromatography (UHPLC) procedure. Molecules 2019, 24, 2429. [Google Scholar] [CrossRef] [Green Version]
- Fanali, C.; Della Posta, S.; Vilmercati, A.; Dugo, L.; Russo, M.; Petitti, T.; Mondello, L.; De Gara, L. Extraction, analysis, and antioxidant activity evaluation of phenolic compounds in different Italian extra-virgin olive oils. Molecules 2018, 23, 3249. [Google Scholar] [CrossRef] [Green Version]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The phenolic fraction of Italian extra virgin olive oils: Elucidation through combined liquid chromatography and NMR approaches. Food Anal. Methods 2019, 12, 1759–1770. [Google Scholar] [CrossRef]
- Fiorini, D.; Boarelli, M.C.; Conti, P.; Alfei, B.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Fedeli, D.; Gabbianelli, R.; Pacetti, D. Chemical and sensory differences between high price and low price extra virgin olive oils. Food Res. Int. 2018, 105, 65–75. [Google Scholar] [CrossRef]
- Ricciutelli, M.; Marconi, S.M.; Boarelli, C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. J. Chromatogr. A 2017, 1481, 53–63. [Google Scholar] [CrossRef]
- Piscopo, A.; Zappia, A.; De Bruno, A.; Poiana, M. Effect of the harvesting time on the quality of olive oils produced in Calabria. Eur. J. Lipid Sci. Technol. 2018, 120, 1700304. [Google Scholar] [CrossRef]
- Klikarová, J.; Česlová, L.; Kalendová, P.; Dugo, P.; Mondello, L.; Cacciola, F. Evaluation of Italian extra virgin olive oils based on the phenolic compounds composition using multivariate statistical methods. Eur. Food Res. Technol. 2018, 246, 1241–1249. [Google Scholar] [CrossRef]
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Meth. 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Cacciola, F.; Dugo, L.; De Gara, L.; Dugo, P.; Mondello, L. Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Mostafa, H.; Goodrich-Schneider, R.; Baker, G.L.; Welt, B.; Marshall, M.R. High power ultrasound: Impact on olive paste temperature, malaxation time, extraction efficiency, and characteristics of extra virgin olive oil. Food Bioprocess Tech. 2018, 11, 634–644. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 432/2012 (16 May 2012) Establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Saini, R.K.; Keum, Y.S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Tanno, R.; Kato, S.; Shimizu, N.; Ito, J.; Sato, S.; Ogura, Y.; Sakaino, M.; Sano, T.; Eitsuka, T.; Kuwahara, S.; et al. Analysis of oxidation products of α-tocopherol in extra virgin olive oil using liquid chromatography–tandem mass spectrometry. Food Chem. 2020, 306, 125582. [Google Scholar] [CrossRef]
- Inarejos-García, A.M.; Santacatterina, M.; Salvador, M.D.; Fregapane, G.; Gómez-Alonso, S. PDO virgin olive oil quality-Minor components and organoleptic evaluation. Food Res. Int. 2010, 43, 2138–2146. [Google Scholar] [CrossRef]
- Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 25 February 2020).
- Tang, G.; Huang, Y.; Zhang, T.; Wang, Q.; Crommen, J.; Fillet, M.; Jiang, Z. Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Pharm. Biomed. Anal. 2018, 157, 217–225. [Google Scholar] [CrossRef]
- Pancorbo, A.C.; Carretero, A.S.; Gutiérrez, A.F. Co-electroosmotic capillary eletrophoresis determination of phenolic acids in commercial olive oil. J. Sep. Sci. 2005, 28, 925–934. [Google Scholar] [CrossRef]
- Pereira, C.; Costa Freitas, A.M.; Cabrita, M.J.; Garcia, R. Assessing tyrosol and hydroxytyrosol in Portuguese monovarietal olive oils: Revealing the nutraceutical potential by a combined spectroscopic and chromatographic techniques-based approach. LWT 2020, 118, 108797. [Google Scholar] [CrossRef]
- Bellumori, M.; Cecchi, L.; Innocenti, M.; Clodoveo, M.L.; Corbo, F.; Mulinacci, N. The EFSA health claim on olive oil polyphenols: Acid hydrolysis validation and total hydroxytyrosol and tyrosol determination in Italian virgin olive oils. Molecules 2019, 24, 2179. [Google Scholar] [CrossRef] [Green Version]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef]
- De Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of phenolic compounds in virgin olive oil by response surface methodology with particular focus on flavonoids and lignans. LWT Food Sci. Technol. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Bakhouche, A.; Lozano-Sánchez, J.; Beltrán-Debón, R.; Joven, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic characterization and geographical classification of commercial Arbequina extra-virgin olive oils produced in southern Catalonia. Food Res. Int. 2013, 50, 401–408. [Google Scholar] [CrossRef]
- Amanpour, A.; Kelebek, H.; Selli, S. LC-DAD-ESI-MS/MS–based phenolic profiling and antioxidant activity in Turkish cv. Nizip Yaglik olive oils from different maturity olives. J. Mass Spectrom. 2019, 54, 227–238. [Google Scholar] [CrossRef]
- Luque-Muñoz, A.; Tapia, R.; Haidour, A.; Justicia, J.; Cuerva, J.M. Direct determination of phenolic secoiridoids in olive oil by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pascale, R.; Bianco, G.; Cataldi, T.R.I.; Buchicchio, A.; Losito, I.; Altieri, G.; Genovese, F.; Tauriello, A.; Di Renzo, G.C.; Lafiosca, M.C. Investigation of the effects of virgin olive oil cleaning systems on the secoiridoid aglycone content using high performance liquid chromatography–mass spectrometry. J. Am. Oil Chem. Soc. 2018, 95, 665–671. [Google Scholar] [CrossRef]
Country | Denomination | Label | Cultivar, Year (n. Samples) |
---|---|---|---|
Apulia | PDO | Terra di Bari | Coratina, 2019 (1) |
MV | Peranzana, 2019 (2) | ||
Olivastra, 2019 (1) | |||
Coratina, 2019 (2) | |||
Picholine, 2019 (1) | |||
Blend | Coratina-Peranzana, 2019 (1) | ||
Sicily | PDO | Monti Iblei | Tonda Iblea-Moresca, 2018 (1) |
Valle del Belice | Nocellara del Belice, 2018 (1) § | ||
Val di Mazara | Biancolilla-Cerasuola-Nocellara del Belice, 2018 (2) § | ||
Valli Trapanesi | Biancolilla-Cerasuola-Nocellara del Belice, 2018 (1) § | ||
PGI | Cerasuola, 2018 (1) § | ||
Nocellara-Biancolilla-Cerasuola, 2018 (3) § | |||
Nocellara Etnea, 2018 (1) § | |||
Nocellara del Belice, 2018 (1) § | |||
MV | Nocellara del Belice, 2019 (1) | ||
Nocellara Etnea, 2018 (1) § | |||
Tuscany | PDO | Chianti classico | Moraiolo, 2019 (2) |
Leccino-Moraiolo-Frantoio, 2019 (3) | |||
Moraiolo-Frantoio, 2019 (2) | |||
PGI | Frantoio, 2019 (1) | ||
Leccino-Moraiolo-Frantoio, 2019 (5) | |||
Leccino-Moraiolo-Frantoio- Pendolino, 2019 (1) | |||
Bio | Leccino-Moraiolo-Frantoio, 2019 (5) | ||
Moraiolo, 2019 (2) | |||
Frantoio, 2019 (2) | |||
Blend | Leccino-Moraiolo-Frantoio-Pendolino, 2019 (2) | ||
MV | Frantoio, 2019 (1) | ||
Liguria | PDO | Riviera Ligure | Taggiasca, 2019 (1) |
MV | Taggiasca, 2019 (1) | ||
Campania | MV | Leccio del Corno, 2019 (2) | |
Abruzzo | PDO | Colline Teatine | Gentile di Chieti-Intosso-Leccino, 2018 (1) |
Dritta, 2019 (1) | |||
Intosso, 2019 (2) | |||
Blend | Gentile di Chieti-Intosso-Leccino, 2019 (2) | ||
Garda area | PDO | Garda Trentino | Casaliva-Leccino-Frantoio, 2019 (1) |
MV | Casaliva, 2019 (2) | ||
Blend | Casaliva-Frantoio-Leccino, 2019 (1) | ||
Calabria | Bio | Carolea, 2019 (1) | |
MV | Ottobratica, 2019 (1) | ||
Blend | Ottobratica-Sinopolese, 2019 (1) | ||
Lazio | Bio | Canino, 2019 (1) | |
Fratoio, 2018 (1) | |||
MV | Itrana, 2018 (1) | ||
Leccino, 2019 (1) | |||
Rosciola, 2018 (1) | |||
Blend | Caninese-Frantoio-Maurino-Leccino-Pendolino, 2019 (1) | ||
Sardinia | PDO | Sardegna | Bosana-Semidana, 2019 (1) |
Bosana, 2019 (1) | |||
Blend | Bosana-Frantoio-Semidana-Coratina-Leccino, 2019 (2) | ||
MV | Bosana, 2019 (2) | ||
Umbria | Blend | Leccino-Frantoio-Moraiolo, 2019 (1) | |
Leccino-Frantoio-Moraiolo-S.Felice,2019 (1) | |||
Italy | Blend | EVOO | Not reported, 2018 (15) § |
EU | Olives from EU member states | EVOO milled in Italy | Not reported, 2018 (19) § |
Italy + EU | Olives from Italy + EU member states | EVOO milled in Italy | Not reported, 2018 (4) § |
α-Tocopherol | α-Tocotrienol | α-Tocopherol | α-Tocopherol | Gallic Acid | Hydroxytyrosol | Tyrosol | Apigenin | Luteolin | Oleocanthala | Oleacina | Ligstroside Aglyconeb | Oleuropein Aglycone a | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apulia | range | 166.9–220.6 | 0.9–3.1 | 3.1–8.7 | 2.8–16.0 | <LOD–6.5 | 22.8–146.5 | 25.5–71.3 | 0.1–11.7 | 5–24.8 | <LOD–11.8 | 180.3–566.3 | 101.6–513.1 | 343.4–1248.9 |
average | 195.4 | 2.4 | 4.1 | 10.7 | 1.7 | 70.4 | 41.3 | 4.5 | 16.2 | 7.6 | 352.1 | 298.9 | 903.6 | |
Sicily | range | 80.4–184.0 | 1.3–3.7 | 2.9–9.2 | 2.7–15.5 | 1.7–19.7 | 27.5–80.8 | 5.4–79.5 | <LOD–8.5 | 1.4–34.0 | 1.8–30.5 | 34.0–396.2 | 5.7–78.4 | 139.5–418.4 |
average | 123.7 | 1.8 | 5.5 | 5.4 | 7.6 | 62.8 | 37.3 | 2.0 | 16.1 | 8.0 | 148.6 | 44.3 | 274.6 | |
Tuscany | range | 113.1–232.2 | 1.1–4.9 | 1.6–7.1 | 3.4–17.1 | <LOD–9.3 | 25.4–199.8 | 12.5–59.9 | <LOD–14.0 | 7.6–53.0 | <LOD–38.7 | 35.1–493.4 | 47.4–329.4 | 268.7–1514.0 |
average | 152.9 | 2.4 | 2.7 | 11.4 | 1.4 | 78.3 | 30.8 | 4.4 | 25.9 | 5.9 | 229.2 | 172.4 | 872.6 | |
Lazio | range | 164.8–211.4 | 3.3–4.4 | 2.8–8.6 | 6.1–15.2 | <LOD–4.3 | 34.9–80.4 | 8.2–52.0 | <LOD–19.5 | 3.5–26.9 | 0.1–17.0 | 71.4–331.4 | 11.0–141.0 | 89.5–1749.5 |
average | 190.3 | 3.9 | 5.4 | 10.9 | 1.3 | 59.4 | 27.5 | 7.2 | 16.3 | 4.7 | 197.0 | 81.8 | 830.7 | |
Abruzzo | range | 99.5–198.1 | 1.7–3.4 | 2.3–4.5 | 2.3–13.2 | <LOD–1.7 | 50.5–117.3 | 8.9–34.2 | <LOD–7.1 | 9.3–34.4 | 1.9–34.8 | 123.0–590.9 | 20.4–370.8 | 138.7–1785.9 |
average | 129.6 | 2.7 | 3.1 | 5.6 | 0.8 | 95.0 | 19.9 | 1.7 | 16.8 | 14.3 | 225.6 | 114.9 | 896.0 | |
Campania | range | 153.5–198.8 | 2.6–2.7 | 3.0–3.8 | 9.2–17.7 | 0.4–3.1 | 111.3–168.8 | 41.7–45.4 | 1.1–2.0 | 16.2–19.9 | 1.3–31.2 | 59.7–498.7 | 131.8–254.3 | 877.8–915.7 |
average | 176.2 | 2.6 | 3.4 | 13.4 | 1.7 | 140.0 | 43.5 | 1.5 | 18.1 | 16.2 | 279.2 | 193.0 | 896.8 | |
Garda | range | 89.6–123.9 | 2.1–2.6 | 1.8–2.0 | 3.8–6.3 | 0.2–3.1 | 68.3–76.7 | 33.2–54.8 | 0.5–8.0 | 21.0–40.9 | 5.3–8.8 | 156.4–290.7 | 86.7–130.5 | 438.3–1015.1 |
average | 112.6 | 2.3 | 1.9 | 5.1 | 1.5 | 70.9 | 40.2 | 3.2 | 30.6 | 7.3 | 239.1 | 107.7 | 799.6 | |
Sardinia | range | 113.4–139.6 | 2.6–3.0 | 2.1–3.2 | 4.7–8.3 | <LOD–0.7 | 39.1–69.5 | 19.2–42.4 | <LOD–4.2 | 13.5–32.2 | 3.8–8.9 | 154.6–272.4 | 110.7–288.0 | 590.8–1105.4 |
average | 130.5 | 2.8 | 2.6 | 5.7 | 0.2 | 55.0 | 30.3 | 1.5 | 20.8 | 6.2 | 213.1 | 165.4 | 778.0 | |
Calabria | range | 144.0–201.0 | 3.5–3.9 | 3.4–6.7 | 3.7–16.4 | <LOD–0.2 | 56.7–145.3 | 25.3–52.4 | 6.0–15.4 | 20.8–32.8 | 0.4–14.8 | 54.7–408.2 | 86.0–169.0 | 562.7–1004.1 |
average | 163.7 | 3.7 | 5.1 | 10.4 | 0.1 | 105.2 | 38.2 | 9.9 | 28.7 | 7.7 | 287.3 | 116.6 | 777.9 | |
Umbria | range | 130.6–156.1 | 2.4–2.4 | 1.8–2.4 | 11.0–11.8 | <LOD–0.4 | 47.3–52.8 | 21.2–24.4 | 6.2–6.9 | 26.7–36.9 | 2.6–4.7 | 137.0–254.0 | 81.8–97.8 | 666.5–892.2 |
average | 143.4 | 2.4 | 2.1 | 11.4 | 0.2 | 50.1 | 22.8 | 6.6 | 31.8 | 3.7 | 145.5 | 89.8 | 779.3 | |
Liguria | range | 70.2–125.9 | 2.1–2.9 | 3.5–5.3 | 4.3–4.7 | 3.2–5.1 | 122.2–129.3 | 37.2–37.8 | 1.1–2.3 | 21.0–23.7 | 2,4–2.7 | 28.2–32.0 | 39.5–45.3 | 102.6–143.0 |
average | 98.1 | 2.5 | 4.4 | 4.5 | 4.1 | 125.8 | 37.5 | 1.7 | 22.3 | 2.6 | 30.1 | 42.4 | 122.8 | |
Italy | range | 84.5–151.4 | 1.6–4.0 | 3.9–10.2 | 3.9–13.9 | 2.3–13.3 | 47.7–145.2 | 38.6–124.2 | <LOD–3.5 | 11.4–26.4 | 0.3–15.1 | 23.2–259.2 | 21.1–136.5 | 211.1–692.3 |
average | 128.0 | 2.8 | 6.5 | 9.1 | 6.5 | 84.1 | 59.7 | 1.2 | 18.1 | 5.3 | 137.2 | 68.3 | 434.7 | |
EU | range | 90.1–209.0 | 1.5–4.3 | 3.9–11.5 | 6.8–17.5 | 0.8–11.0 | 37.8–208.1 | 21.5–90.7 | <LOD–6.1 | 8.5–27.0 | 0.3–5.4 | 22.4–177.0 | 21.1–142.9 | 218.7–736.8 |
average | 137.9 | 3.0 | 8.4 | 10.8 | 5.7 | 78.4 | 52.4 | 0.9 | 17.5 | 2.0 | 104.8 | 45.6 | 378.0 | |
Italy + EU | range | 152.7–165.9 | 1.6–5.8 | 6.1–10.4 | 3.1–12.9 | 2.3–14.5 | 53.1–93.2 | 20.7–82.7 | <LOD–4.4 | 19.2–22.9 | 0.7–2.7 | 64.4–94.9 | 27.1–59.8 | 116.7–619.9 |
average | 164.3 | 3.2 | 8.6 | 10.7 | 5.1 | 71.0 | 55.7 | 2.1 | 21.3 | 1.9 | 70.2 | 40.8 | 422.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, A.; Russo, M.; Cacciola, F.; Salafia, F.; Polkowska, Ż.; Dugo, P.; Mondello, L. Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis. Foods 2020, 9, 1120. https://doi.org/10.3390/foods9081120
Różańska A, Russo M, Cacciola F, Salafia F, Polkowska Ż, Dugo P, Mondello L. Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis. Foods. 2020; 9(8):1120. https://doi.org/10.3390/foods9081120
Chicago/Turabian StyleRóżańska, Anna, Marina Russo, Francesco Cacciola, Fabio Salafia, Żaneta Polkowska, Paola Dugo, and Luigi Mondello. 2020. "Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis" Foods 9, no. 8: 1120. https://doi.org/10.3390/foods9081120
APA StyleRóżańska, A., Russo, M., Cacciola, F., Salafia, F., Polkowska, Ż., Dugo, P., & Mondello, L. (2020). Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis. Foods, 9(8), 1120. https://doi.org/10.3390/foods9081120