Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages
Abstract
:1. Introduction
2. Non-Alcoholic Fermented Cereal Beverage Segment
2.1. An Overview of NFCBs
2.2. Processing Technologies and Their Outcome
2.2.1. Pre-Treatment of Raw Materials
2.2.2. Mashing
2.2.3. Cooling and Addition of Yeast, LAB Cultures, and Other Ingredients
2.2.4. Fermentation Process
2.3. Fermentation Microbiota and Safety of NFCBs
Probiotics
2.4. The Nutritional and Bioactive Composition of Commonly Consumed NFCBs
2.4.1. Phenolic Compounds and Antioxidant Activity
2.4.2. Amino Acids
3. Future Perspectives to Enhance the Functional Properties of NFCBs
3.1. Consumers’ Preferences and Requirements
3.2. Possibilities of Improving the Appeal and Functionality of NFCBs
3.3. Perspectives for Future NFCBs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pop, O.L.; Salanţă, L.C.; Pop, C.R.; Coldea, T.; Socaci, S.A.; Suharoschi, R.; Vodnar, D.C. Prebiotics and Dairy Applications; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128164952. [Google Scholar]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Salanță, L.C.; Uifălean, A.; Iuga, C.A.; Tofană, M.; Cropotova, J.; Pop, O.L.; Pop, C.R.; Rotar, A.M.; Bautista-Ávila, M.; Velázquez González, C. Valuable Food Molecules with Potential Benefits for Human Health. In The Health Benefits of Foods—Current Knowledge and Further Development; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Phan, U.T.X.; Chambers, E. Application of an Eating Motivation Survey to Study Eating Occasions. J. Sens. Stud. 2016, 31, 114–123. [Google Scholar] [CrossRef]
- Phan, U.T.X.; Chambers, E. Motivations for choosing various food groups based on individual foods. Appetite 2016, 105, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Phan, U.T.X.; Chambers, E. Motivations for meal and snack times: Three approaches reveal similar constructs. Food Qual. Prefer. 2018, 68, 267–275. [Google Scholar] [CrossRef]
- Wang, Q.J.; Mielby, L.A.; Junge, J.Y.; Bertelsen, A.S.; Kidmose, U.; Spence, C.; Byrne, D.V. The role of intrinsic and extrinsic sensory factors in sweetness perception of food and beverages: A review. Foods 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.; Phan, U.; Chanadang, S.; Maughan, C.; Sanchez, K.; Di Donfrancesco, B.; Gomez, D.; Higa, F.; Li, H.; Chambers, E.; et al. Motivations for Food Consumption during Specific Eating Occasions in Turkey. Foods 2016, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.G.; Sonawane, S.K.; Arya, S.S. Cereal based functional beverages: A review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 914–919. [Google Scholar] [CrossRef]
- Uifălean, A.; Schneider, S.; Ionescu, C.; Lalk, M.; Iuga, C.A. Soy Isoflavones and Breast Cancer Cell Lines: Molecular Mechanisms and Future Perspectives. Molecules 2015, 21, 13. [Google Scholar] [CrossRef] [Green Version]
- Uifălean, A.; Schneider, S.; Gierok, P.; Ionescu, C.; Iuga, C.A.; Lalk, M. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. Int. J. Mol. Sci. 2016, 17, 1443. [Google Scholar] [CrossRef] [Green Version]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Ghoshal, G.; Kansal, S.K. The Emerging Trends in Functional and Medicinal Beverage Research and Its Health Implication. In Functional and Medicinal Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128163979. [Google Scholar]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Angelescu, I.R.; Zamfir, M.; Stancu, M.M.; Grosu-Tudor, S.S. Identification and probiotic properties of lactobacilli isolated from two different fermented beverages. Ann. Microbiol. 2019, 69, 1557–1565. [Google Scholar] [CrossRef]
- Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.L. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: A neglected food group. Nutr. Res. Rev. 2017, 30, 1–24. [Google Scholar] [CrossRef]
- Chaves-López, C.; Rossi, C.; Maggio, F.; Paparella, A.; Serio, A. Changes Occurring in Spontaneous Maize Fermentation: An Overview. Fermentation 2020, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z. Medicinal Properties and Functional Components of Beverages. In Functional and Medicinal Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128163979. [Google Scholar]
- Anal, A.K. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: A review. Fermentation 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Phiri, S.; Schoustra, S.E.; van den Heuvel, J.; Smid, E.J.; Shindano, J.; Linnemann, A. Fermented cereal-based Munkoyo beverage: Processing practices, microbial diversity and aroma compounds. PLoS ONE 2019, 14, e0223501. [Google Scholar] [CrossRef] [Green Version]
- Achi, O.K.; Asamudo, N.U. Cereal-Based Fermented Foods of Africa as Functional Foods. Int. J. Microbiol. Appl. 2019, 1527–1558. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Gammoh, S.; Alkhaldy, H.A.; Al-Mahasneh, M.A.; Tranchant, C.C.; Kubow, S.; Masadeh, N. Fermented Malt Beverages and Their Biomedicinal Health Potential: Classification, Composition, Processing, and Bio-Functional Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128152713. [Google Scholar]
- Kårlund, A.; Gómez-Gallego, C.; Korhonen, J.; Palo-Oja, O.M.; El-Nezami, H.; Kolehmainen, M. Harnessing microbes for sustainable development: Food fermentation as a tool for improving the nutritional quality of alternative protein sources. Nutrients 2020, 12, 1020. [Google Scholar] [CrossRef] [Green Version]
- Menezes, A.G.T.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I. Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017, 65, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwan, R.F.; Ramos, C.L. Functional Beverages from Cereals. In Functional and Medicinal Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128163979. [Google Scholar]
- Păucean, A.; Man, S.M.; Chiş, M.S.; Mureşan, V.; Pop, C.R.; Socaci, S.A.; Mureşan, C.C.; Muste, S. Use of pseudocereals preferment made with aromatic yeast strains for enhancing wheat bread quality. Foods 2019, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripari, V. Techno-Functional Role of Exopolysaccharides in Cereal-Based, Yogurt-Like Beverages. Beverages 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, C.O.; Ascheri, J.L.R.; Carvalho, C.W.P.; Chávez, D.W.H.; Martins, I.B.A.; Deliza, R.; de Freitas, D.G.C.; Queiroz, V.A.V. Impact of extruded sorghum genotypes on the rehydration and sensory properties of soluble beverages and the Brazilian consumers’ perception of sorghum and cereal beverage using word association. J. Cereal Sci. 2019, 89, 102793. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Bogue, J. Concept optimisation of fermented functional cereal beverages. Br. Food J. 2013, 115, 541–563. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J. Cereal-Based Functional Foods, Probiotics, Everlon Cid Rigobelo. IntechOpen 2012, 161–197. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci. T 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Bellut, K.; Tippmann, J.; Becker, T. Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. ChemBioEng Rev. 2017, 4, 310–326. [Google Scholar] [CrossRef]
- Kubo, M.; Nozu, Y.; Kataoka, C.; Kudo, M.; Taniguchi, S.; Sato, Y.; Nakayama, N.; Watanabe, M. Correlation between Non-Alcoholic Beverage Consumption and Alcohol Drinking Behavior among Japanese Youths. Open J. Prev. Med. 2015, 5, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Arici, M.; Daglioglu, O. Boza: A lactic acid fermented cereal beverage as a traditional Turkish food. Food Rev. Int. 2002, 18, 39–48. [Google Scholar] [CrossRef]
- Ramashia, S.E.; Anyasi, T.A.; Gwata, E.T.; Meddows-Taylor, S.; Jideani, A.I.O. Processing, nutritional composition and health benefits of finger millet sub-Saharan Africa. Food Sci. Technol. 2019, 39, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Awobusuyi, T.D.; Siwela, M.; Kolanisi, U.; Amonsou, E.O. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J. Sci. Food Agric. 2016, 96, 1356–1361. [Google Scholar] [CrossRef]
- Oguro, Y.; Nakamura, A.; Kurahashi, A. Effect of temperature on saccharification and oligosaccharide production efficiency in koji amazake. J. Biosci. Bioeng. 2019, 127, 570–574. [Google Scholar] [CrossRef]
- Olusanya, R.N.; Kolanisi, U.; van Onselen, A.; Ngobese, N.Z.; Siwela, M. Nutritional composition and consumer acceptability of Moringa oleifera leaf powder (MOLP)-supplemented mahewu. S. Afr. J. Bot. 2020, 129, 175–180. [Google Scholar] [CrossRef]
- Gernet, M.V.; Gribkova, I.N.; Kobelev, K.V.; Nurmukhanbetova, D.E.; Assembayeva, E.K. Biotechnological aspects of fermented drinks production on vegetable raw materials. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2019, 1, 223–230. [Google Scholar] [CrossRef]
- Fallourd, M.J.; Viscione, L. Ingredient Selection for Stabilisation and Texture Optimisation of Functional Beverages and the Inclusion of Dietary Fibre; Woodhead Publishing Limited: Cambridge, UK; Sawston, UK, 2009; ISBN 9781845693428. [Google Scholar]
- Vinicius De Melo Pereira, G.; De Carvalho Neto, D.P.; Junqueira, A.C.D.O.; Karp, S.G.; Letti, L.A.J.; Magalhães Júnior, A.I.; Soccol, C.R. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry. Food Rev. Int. 2020, 36, 135–167. [Google Scholar] [CrossRef]
- Pontonio, E.; Rizzello, C.G. Minor and Ancient Cereals: Exploitation of the Nutritional Potential Through the Use of Selected Starters and Sourdough Fermentation, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128146392. [Google Scholar]
- Oura, S.; Suzuki, S.; Hata, Y.; Kawato, A.; Abe, Y. Evaluation of physiological functionalities of amazake in mice. J. Brew. Soc. Jpn. 2007, 102, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Michio Sata, Y.N. Effect of a Late Evening Snack of Amazake in Patients with Liver Cirrhosis: A Pilot Study. J. Nutr. Food Sci. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Alauddin, M.; Kabir, Y. Functional and Molecular Role of Processed-Beverages toward Healthier Lifestyle. In Nutrients in Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128168424. [Google Scholar]
- Maruki-Uchida, H.; Sai, M.; Yano, S.; Morita, M.; Maeda, K. Amazake made from sake cake and rice koji suppresses sebum content in differentiated hamster sebocytes and improves skin properties in humans. Biosci. Biotechnol. Biochem. 2020, 1–7. [Google Scholar] [CrossRef]
- Nicolau, A.I.; Gostin, A.I. Safety of Borsh; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128006207. [Google Scholar]
- Pasqualone, A.; Summo, C.; Laddomada, B.; Mudura, E.; Coldea, T.E. Effect of processing variables on the physico-chemical characteristics and aroma of borş, a traditional beverage derived from wheat bran. Food Chem. 2018, 265, 242–252. [Google Scholar] [CrossRef]
- Grosu-Tudor, S.-S.; Stefan, I.-R.; Stancu, M.-M.; Cornea, C.-P.; De Vuyst, L.; Zamfir, M. Microbial and nutritional characteristics of fermented wheat bran in traditional Romanian borş production. Rom. Biotechnol. Lett. 2019, 24, 440–447. [Google Scholar] [CrossRef]
- Yeǧin, S.; Üren, A. Biogenic amine content of boza: A traditional cereal-based, fermented Turkish beverage. Food Chem. 2008, 111, 983–987. [Google Scholar] [CrossRef]
- Kedia, G.; Wang, R.; Patel, H.; Pandiella, S.S. Use of mixed cultures for the fermentation of cereal-based substrates with potential probiotic properties. Process Biochem. 2007, 42, 65–70. [Google Scholar] [CrossRef]
- Altay, F.; Karbancioglu-Güler, F.; Daskaya-Dikmen, C.; Heperkan, D. A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 2013, 167, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Sahu, L.; Panda, S.K. Innovative Technologies and Implications in Fermented Food and Beverage Industries: An Overview. In Innovations in Technologies for Fermented Food and Beverage Industries; Springer: Berlin, Germany, 2018; pp. 1–23. [Google Scholar] [CrossRef]
- Ramakrishnan, S.R.; Ravichandran, K.; Antony, U.M. Whole Grains: Processing, Product Development, and Nutritional Aspects; Mir, S.A., Manickavasagan, A., Shah, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 103–127. [Google Scholar]
- Lee, Y. Characterization of Weissella kimchii PL9023 as a potential probiotic for women. FEMS Microbiol. Lett. 2005, 250, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Dalodé, G.; Jespersen, L.; Hounhouigan, J.; Moller, P.L.; Nago, C.M.; Jakobsen, M. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin. J. Appl. Microbiol. 2007, 103, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Mandal, V.; Sen, S.K.; Mandal, N.C. Isolation and Characterization of Pediocin NV 5 Producing Pediococcus acidilactici LAB 5 from Vacuum-Packed Fermented Meat Product. Indian J. Microbiol. 2011, 51, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adinsi, L.; Akissoé, N.H.; Dalodé-Vieira, G.; Anihouvi, V.B.; Fliedel, G.; Mestres, C.; Hounhouigan, J.D. Sensory evaluation and consumer acceptability of a beverage made from malted and fermented cereal: Case of gowe from Benin. Food Sci. Nutr. 2015, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adinsi, L.; Mestres, C.; Akissoé, N.; Vieira-Dalodé, G.; Anihouvi, V.; Durand, N.; Hounhouigan, D.J. Comprehensive quality and potential hazards of gowe, a malted and fermented cereal beverage from West Africa. A diagnostic for a future re-engineering. Food Control 2017, 82, 18–25. [Google Scholar] [CrossRef]
- Agarry, O.O.; Nkama, I.; Akoma, O. Production of Kunun-zaki (A Nigerian fermented cereal beverage) using starter culture. Int. Res. J. Microbiol. 2010, 1, 18–25. [Google Scholar]
- Nkama, I.; Agarry, O.O.; Akoma, O. Sensory and nutritional quality characteristics of powdered‘ Kunun-zaki’: A Nigerian fermented cereal beverage. Afr. J. Food Sci. 2010, 4, 364–370. [Google Scholar]
- Wartu, J.R.; Whong, C.M.Z.; Abdullahi, I.O.; Ameh, J.B.; Musa, B.J. Trends in total aflatoxins and nutritional impact of triticum spp during fermentation of kunun-zaki; a Nigeria sorghum bicolor based non-alcoholic beverage. Int. J. Life Sci. Pharma Res. 2015, 5, 26–35. [Google Scholar]
- Olufunke, A.P. Assessment of Nutritional and Sensory Quality of Kunun Zaki—A Homemade Traditional Nigerian Beverage. J. Nutr. Food Sci. 2014, 05, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Basinskiene, L.; Juodeikiene, G.; Vidmantiene, D.; Tenkanen, M.; Makaravicius, T.; Bartkiene, E. Non-alcoholic beverages from fermented cereals with increased oligosaccharide content. Food Technol. Biotechnol. 2016, 54, 36–44. [Google Scholar] [CrossRef]
- Gambuś, H.; Mickowska, B.; Bartoń, H.; Augustyn, G.; Zięć, G.; Litwinek, D.; Szary-Sworst, K.; Berski, W. Health benefits of kvass manufactured from rye wholemeal bread. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 34–39. [Google Scholar] [CrossRef]
- Bvochora, J.M.; Reed, J.D.; Read, J.S.; Zvauya, R. Effect of fermentation processes on proanthocyanidins in sorghum during preparation of Mahewu, a non-alcoholic beverage. Process Biochem. 1999, 35, 21–25. [Google Scholar] [CrossRef]
- Idowu, O.O.; Fadahunsi, I.F.; Onabiyi, O.A. A Production and Nutritional Evaluation of Mahewu: A Non-Alcoholic Fermented Beaverage of South Africa. Int. J. Res. Pharm. Biosci. 2016, 3, 27. [Google Scholar]
- Salvador, E.M.; McCrindle, C.M.E.; Buys, E.M.; Steenkamp, V. Standardization of cassava mahewu fermentation and assessment of the effects of iron sources used for fortification. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 10898–10912. [Google Scholar] [CrossRef]
- Fadahunsi, I.; Soremekun, O. Production, Nutritional and Microbiological Evaluation of Mahewu a South African Traditional Fermented Porridge. J. Adv. Biol. Biotechnol. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Foma, R.K.; Destain, J.; Mobinzo, P.K.; Kayisu, K.; Thonart, P. Study of physicochemical parameters and spontaneous fermentation during traditional production of munkoyo, an indigenous beverage produced in Democratic Republic of Congo. Food Control 2012, 25, 334–341. [Google Scholar] [CrossRef]
- Zulu, R.M.; Dillon, V.M.; Owens, J.D. Munkoyo beverage, a traditional Zambian fermented maize gruel using Rhynchosia root as amylase source. Int. J. Food Microbiol. 1997, 34, 249–258. [Google Scholar] [CrossRef]
- Chileshe, J.; van den Heuvel, J.; Handema, R.; Zwaan, B.J.; Talsma, E.F.; Schoustra, S. Nutritional composition and microbial communities of two non-alcoholic traditional fermented beverages from Zambia: A study of mabisi and munkoyo. Nutrients 2020, 12, 1628. [Google Scholar] [CrossRef]
- Byakika, S.; Mukisa, I.M.; Byaruhanga, Y.B.; Male, D.; Muyanja, C. Influence of food safety knowledge, attitudes and practices of processors on microbiological quality of commercially produced traditional fermented cereal beverages, a case of Obushera in Kampala. Food Control 2019, 100, 212–219. [Google Scholar] [CrossRef]
- Misihairabgwi, J.M.; Ishola, A.; Quaye, I.; Sulyok, M.; Krska, R. Diversity and fate of fungal metabolites during the preparation of oshikundu, a Namibian traditional fermented beverage. World Mycotoxin J. 2018, 11, 471–481. [Google Scholar] [CrossRef]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Embashu, W.; Nantanga, K.K.M. Pearl millet grain: A mini-review of the milling, fermentation and brewing of ontaku, a non-alcoholic traditional beverage in Namibia. Trans. R. Soc. S. Afr. 2019, 74, 276–282. [Google Scholar] [CrossRef]
- Ben Omar, N.; Ampe, F. Microbial Community Dynamics during Production of the Mexican Fermented Maize Dough Pozol. Appl. Environ. Microbiol. 2000, 66, 3664–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todorov, S.D.; Holzapfel, W.H. Traditional Cereal Fermented Foods as Sources of Functional Microorganisms; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782420248. [Google Scholar]
- Coskun, F. A Traditional Turkish Fermented Non-Alcoholic Beverage, “Shalgam”. Beverages 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Gadaga, T.H.; Mutukumira, A.N.; Narvhus, J.A.; Feresu, S.B. A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Oi, Y.; Kitabatake, N. Chemical Composition of an East African Traditional Beverage, Togwa. J. Agric. Food Chem. 2003, 51, 7024–7028. [Google Scholar] [CrossRef]
- Waters, D.M.; Mauch, A.; Coffey, A.; Arendt, E.K.; Zannini, E. Lactic Acid Bacteria as a Cell Factory for the Delivery of Functional Biomolecules and Ingredients in Cereal-Based Beverages: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 503–520. [Google Scholar] [CrossRef]
- Ajiro, M.; Araki, M.; Ishikawa, M.; Kobayashi, K.; Ashida, I.; Miyaoka, Y. Analysis of Functional Relationships between Rice Particles and Oral Perception Using Amazake: A Traditional Japanese Beverage of Malted Rice. Food Nutr. Sci. 2017, 08, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, S.; Ito, R.; Maruki-Uchida, H.; Kamei, A.; Yasuoka, A.; Toyoda, T.; Ishijima, T.; Nishimura, E.; Morita, M.; Sai, M.; et al. Intake of a mixture of sake cake and rice malt increases mucin levels and changes in intestinal microbiota in mice. Nutrients 2020, 12, 449. [Google Scholar] [CrossRef] [Green Version]
- Petrova, P.; Petrov, K. Traditional cereal Beverage Boza: Fermentation technology, microbial content and healthy effects. In Fermented Foods Part II Technological Interventions; Ray, R.C., Montet, D., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 284–305. [Google Scholar] [CrossRef]
- Oguro, Y.; Nishiwaki, T.; Shinada, R.; Kobayashi, K.; Kurahashi, A. Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA. J. Biosci. Bioeng. 2017, 124, 178–183. [Google Scholar] [CrossRef]
- Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Ozcan, T. Determination of boza’s organic acid composition as it is affected by raw material and fermentation. Int. J. Food Prop. 2010, 13, 648–656. [Google Scholar] [CrossRef]
- Gotcheva, V.; Pandiella, S.S.; Angelov, A.; Roshkova, Z.; Webb, C. Monitoring the fermentation of the traditional Bulgarian beverage boza. Int. J. Food Sci. Technol. 2001, 36, 129–134. [Google Scholar] [CrossRef]
- Mukisa, I.M.; Nsiimire, D.G.; Byaruhanga, Y.B.; Muyanja, C.M.B.K.; Langsrud, T.; Narvhus, J.A. Obushera: Descriptive sensory profiling and consumer acceptability. J. Sens. Stud. 2010, 25, 190–214. [Google Scholar] [CrossRef]
- Jean-Pierre, G.; Serge, T.; Dolores, R.; Judith, E.; Dora, C.; Carmen, W. Pozol, a popular Mexican traditional beverage made from a fermented alkaline cooked maize dough. Food Besed Approch. Health Nutr. 2003, 11, 23–28. [Google Scholar]
- Iskakova, J.; Smanalieva, J.; Methner, F.J. Investigation of changes in rheological properties during processing of fermented cereal beverages. J. Food Sci. Technol. 2019, 56, 3980–3987. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillooly, M.; Bothwell, T.H.; Charlton, R.W.; Torrance, J.D.; Bezwoda, W.R.; MacPhail, A.P.; Derman, D.P.; Novelli, L.; Morrall, P.; Mayet, F. Factors affecting the absorption of iron from cereals. Br. J. Nutr. 1984, 51, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Khetarpaul, N.; Chauhan, B.M. Effect of fermentation by pure cultures of yeasts and lactobacilli on the available carbohydrate content of pearl millet. Food Chem. 1990, 36, 287–293. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Motarjemi, Y. Assessment of fermentation as a household technology for improving food safety: A joint FAO/WHO workshop. Food Control 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Kitabatake, N.; Gimbi, D.M.; Oi, Y. Traditional non-alcoholic beverage, Togwa, in East Africa, produced from maize flour and germinated finger millet. Int. J. Food Sci. Nutr. 2003, 54, 447–455. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Skendi, A. Introduction to Cereal Processing and By-Products; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081022146. [Google Scholar]
- Hemery, Y.; Chaurand, M.; Holopainen, U.; Lampi, A.M.; Lehtinen, P.; Piironen, V.; Sadoudi, A.; Rouau, X. Potential of dry fractionation of wheat bran for the development of food ingredients, part I: Influence of ultra-fine grinding. J. Cereal Sci. 2011, 53, 1–8. [Google Scholar] [CrossRef]
- Kunze, W. Technology Brewing and Malting; VLB Berlin: Berlin, Germany, 2004; Volume 949. [Google Scholar] [CrossRef]
- Adinsi, L.; Vieira-Dalode, G.; Akissoe, N.; Anihouvi, V.; Mestres, C.; Jacobs, A.; Dlamini, N.; Pallet, D.; Hounhouigan, D.J. Processing and quality attributes of gowe: A malted and fermented cereal-based beverage from Benin. Food Chain 2014, 4, 171–183. [Google Scholar] [CrossRef]
- Igyor, M.A.; Ogbonna, A.C.; Palmer, G.H. Effect of malting temperature and mashing methods on sorghum wort composition and beer flavour. Process Biochem. 2001, 36, 1039–1044. [Google Scholar] [CrossRef]
- Bamforth, C.W. Barley and Malt Starch in Brewing: A General Review; Technical quarterly-Master Brewers Association of the Americas: Madison, WI, USA, 2003; Volume 40, pp. 89–97. [Google Scholar]
- Dlusskaya, E.; Jänsch, A.; Schwab, C.; Gänzle, M.G. Microbial and chemical analysis of a kvass fermentation. Eur. Food Res. Technol. 2008, 227, 261–266. [Google Scholar] [CrossRef]
- Krebs, G.; Becker, T.; Gastl, M. Characterization of polymeric substance classes in cereal-based beverages using asymmetrical flow field-flow fractionation with a multi-detection system. Anal. Bioanal. Chem. 2017, 409, 5723–5734. [Google Scholar] [CrossRef] [PubMed]
- Krebs, G.; Müller, M.; Becker, T.; Gastl, M. Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Res. Int. 2019, 116, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Nsogning Dongmo, S.; Procopio, S.; Sacher, B.; Becker, T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci. Technol. 2016, 54, 37–51. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall Antioxidant Properties of Malt and How They Are Influenced by the Individual Constituents of Barley and the Malting Process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Krebs, G.; Becker, T.; Gastl, M. Influence of malt modification and the corresponding macromolecular profile on palate fullness in cereal-based beverages. Eur. Food Res. Technol. 2020, 246, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
- Liptáková, D.; Matejčeková, Z.; Valík, L. Lactic Acid Bacteria and Fermentation of Cereals and Pseudocereals. Ferment. Process. 2017, 223–254. [Google Scholar] [CrossRef] [Green Version]
- Fărcaş, A.; Tofană, M.; Socaci, S.; Mudura, E.; Scrob, S.; Salanţă, L.; Mureşan, V. Brewers’ spent grain—A new potential ingredient for functional foods. J. Agroaliment. Process. Technol. 2014, 20, 137–141. [Google Scholar]
- Nachel, M. Homebrewing for Dummies, 2nd ed.; Wiley Publishing, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470230626. [Google Scholar]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Motarjemi, Y.; Nout, M.J.R. Food fermentation: A safety and nutritional assessment. Bull. World Health Organ. 1996, 74, 553–559. [Google Scholar]
- Erkus, O.; De Jager, V.C.L.; Spus, M.; Van Alen-Boerrigter, I.J.; Van Rijswijck, I.M.H.; Hazelwood, L.; Janssen, P.W.M.; Van Hijum, S.A.F.T.; Kleerebezem, M.; Smid, E.J. Multifactorial diversity sustains microbial community stability. ISME J. 2013, 7, 2126–2136. [Google Scholar] [CrossRef]
- Butler, S.; O’Dwyer, J.P. Stability criteria for complex microbial communities. Nat. Commun. 2018, 9, 2970. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.N. Fermentation: Foods and Nonalcoholic Beverages, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 3–4, ISBN 9780123947864. [Google Scholar]
- Xiang, H.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Cui, C.; Ruan, Z. Fermentation-enabled wellness foods: A fresh perspective. Food Sci. Hum. Wellness 2019, 8, 203–243. [Google Scholar] [CrossRef]
- Kohajdov, Z.; Karovi, J. Fermentation of cereals for specific purpose. J. Food Nutr. Res. 2007, 46, 51–57. [Google Scholar]
- Aka, S.; Konan, G.; Fokou, G.; Dje Koffi, M.; Bonfoh, B. Review on African traditional cereal beverages. Am. J. Res. Commun. 2014, 2, 103–153. [Google Scholar]
- Mugula, J.K.; Nnko, S.A.M.; Narvhus, J.A.; Sørhaug, T. Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 2003, 80, 187–199. [Google Scholar] [CrossRef]
- Macori, G.; Cotter, P.D. Novel insights into the microbiology of fermented dairy foods. Curr. Opin. Biotechnol. 2018, 49, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Smid, E.J.; Hugenholtz, J. Functional Genomics for Food Fermentation Processes. Annu. Rev. Food Sci. Technol. 2010, 1, 497–519. [Google Scholar] [CrossRef] [PubMed]
- Theron, M.; Lues, J.R. Organic Acids and Food Preservation; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Srikaeo, K. Biotechnological Tools in the Production of Functional Cereal-Based Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128166789. [Google Scholar]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [Green Version]
- Gernah, D.I.; Ariahu, C.C.; Ingbian, E.K. Effects of malting and lactic fermentation on some chemical and functional properties of maize (Zea mays). Am. J. Food Technol. 2011, 6, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Sharaf, O.M.; El-Shafei, K.; Ibrahim, G.A.; El-Sayed, H.S.; Kassem, J.M.; Assem, F.M.; Tawfek, N.F.; Effat, B.A.; Abd El-Khalek, A.B.; Dabiza, N. Preparation, properties and evaluation of folate and riboflavin enriched six functional cereal-fermented milk beverages using encapsulated Lactobacillus plantarum or Streptococcus thermophiles. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1724–1735. [Google Scholar]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT Food Sci. Technol. 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Achi, O.K. The potential for upgrading traditional fermented foods through biotechnology. Afr. J. Biotechnol. 2005, 4, 375–380. [Google Scholar] [CrossRef]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Angelov, A.; Yaneva-Marinova, T.; Gotcheva, V. Oats as a matrix of choice for developing fermented functional beverages. J. Food Sci. Technol. 2018, 55, 2351–2360. [Google Scholar] [CrossRef]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, O.R.; Banwo, K.; Sanni, A.I. Starter-culture to improve the quality of cereal-based fermented foods: Trends in selection and application. Curr. Opin. Food Sci. 2017, 13, 38–43. [Google Scholar] [CrossRef]
- Gök Charyyev, M.; Özden Tuncer, B.; Akpınar Kankaya, D.; Tuncer, Y. Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from boza, a traditional cereal based fermented beverage. J. fur Verbraucherschutz und Leb. 2019, 14, 41–53. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Co-Culture Probiotic Fermentation of Protein-Enriched Cereal Medium (Boza). J. Am. Coll. Nutr. 2020, 39, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Ślizewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Ghoshal, G.; Banerjee, U.C. Traditional Bio-Preservation in Beverages: Fermented Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128166857. [Google Scholar]
- Simango, C. Lactic acid fermentation of sour porridge and mahewu, a non-alcoholic fermented cereal beverage. J. Appl. Sci. S. Afr. 2002, 08, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Yépez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol. 2019, 77, 61–68. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Dahunsi, S.O.; Olayanju, A. Synergistic microbial interactions between lactic acid bacteria and yeasts during production of Nigerian indigenous fermented foods and beverages. Food Control 2020, 110, 106963. [Google Scholar] [CrossRef] [Green Version]
- Salari, M.; Razavi, S.H.; Gharibzahedi, S.M.T. Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Qual. Assur. Saf. Crop. Foods 2015, 7, 355–361. [Google Scholar] [CrossRef]
- Kort, R.; Sybesma, W. Probiotics for every body. Trends Biotechnol. 2012, 30, 613–615. [Google Scholar] [CrossRef]
- Setta, M.C.; Matemu, A.; Mbega, E.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Sarker, M.; Wan, D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota de Carvalho, N.; Costa, E.M.; Silva, S.; Pimentel, L.; Fernandes, T.H.; Estevez Pintado, M. Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation 2018, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Tannock, G.W. Identification of lactobacilli and bifidobacteria. Curr. Issues Mol. Biol. 1999, 1, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, J.S.; Kabir, Y.; Huffman, F.G. Functional foods from cereal grains. Int. J. Food Prop. 2007, 10, 231–244. [Google Scholar] [CrossRef]
- Mudura, E.; Coldea, T.E.; Socaciu, C.; Ranga, F.; Pop, C.R.; Rotar, A.M.; Pasqualone, A. Brown beer vinegar: A potentially functional product based on its phenolic profile and antioxidant activity. J. Serbian Chem. Soc. 2018, 83, 19–30. [Google Scholar] [CrossRef]
- Nout, M.J.R. Rich nutrition from the poorest—Cereal fermentations in Africa and Asia. Food Microbiol. 2009, 26, 685–692. [Google Scholar] [CrossRef]
- Lähteenmäki, L. Consumer interpretation of nutrition and other information on food and beverage labels. In Advances in Food and Beverage Labelling: Information and Regulations; Elsevier Ltd.: Cambridge, UK, 2015; pp. 133–148. [Google Scholar] [CrossRef]
- Salanță, L.C.; Tofană, M.; Domokos, B.; Socaci, S.A.; Pop, C.R.; Fărcaș, A.C. Development of functional beverage from wheat grass juice. Bull. UASVM Food Sci. Technol. 2016, 73, 155–156. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Klopčič, M.; Slokan, P.; Erjavec, K. Consumer preference for nutrition and health claims: A multi-methodological approach. Food Qual. Prefer. 2020, 82. [Google Scholar] [CrossRef]
- Kim, M.K.; Kwak, H.S. Influence of functional information on consumer liking and consumer perception related to health claims for blueberry functional beverages. Int. J. Food Sci. Technol. 2015, 50, 70–76. [Google Scholar] [CrossRef]
- Costell, E.; Tárrega, A.; Bayarri, S. Food acceptance: The role of consumer perception and attitudes. Chemosens. Percept. 2010, 3, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Viana, J.V.; Da Cruz, A.G.; Zoellner, S.S.; Silva, R.; Batista, A.L.D. Probiotic foods: Consumer perception and attitudes. Int. J. Food Sci. Technol. 2008, 43, 1577–1580. [Google Scholar] [CrossRef]
- Sinclair, S.; Hammond, D.; Goodman, S. Sociodemographic differences in the comprehension of nutritional labels on food products. J. Nutr. Educ. Behav. 2013, 45, 767–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasapoğlu, K.N.; Daşkaya-Dikmen, C.; Yavuz-Düzgün, M.; Karaça, A.C.; Özçelik, B. Enrichment of Beverages with Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128166871. [Google Scholar]
- Aadil, R.M.; Roobab, U.; Sahar, A.; ur Rahman, U.; Khalil, A.A. Functionality of Bioactive Nutrients in Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128168424. [Google Scholar]
- Pop, A.; Muste, S.; Păucean, A.; Chiș, S.; Man, S.; Salanță, L.; Marc, R.; Mureșan, A.M. Herbs and Spices in Terms of Food Preservation and Shelf Life. Hop Med. Plants 2019, 27, 57–65. [Google Scholar]
- Campbell-Platt, G. Fermented foods—A world perspective. Food Res. Int. 1994, 27, 253–257. [Google Scholar] [CrossRef]
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nuñez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.S.; et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef] [Green Version]
- Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 2012, 155, 120–127. [Google Scholar] [CrossRef]
- Cilla, A.; Garcia-Llatas, G.; Lagarda, M.J.; Barberá, R.; Alegría, A. Development of Functional Beverages: The Case of Plant Sterol-Enriched Milk-Based Fruit Beverages. In Functional and Medicinal Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128163979. [Google Scholar]
- Bancalari, E.; Castellone, V.; Bottari, B.; Gatti, M. Wild Lactobacillus casei Group Strains: Potentiality to ferment plant derived juices. Foods 2020, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Gocmen, D.; Kumral, A.Y. A traditional Turkish fermented cereal food: Tarhana. Food Rev. Int. 2007, 23, 107–121. [Google Scholar] [CrossRef]
- Kivanç, M.; Funda, E.G. A functional food: A traditional tarhana fermentation. Food Sci. Technol. 2017, 37, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Kreisz, S.; Arendt, E.K.; Hübner, F.; Zarnkov, M. Cereal-based gluten-free functional drinks. In Gluten-Free Cereal Products and Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 373–392. [Google Scholar]
- Katan, M.B.; De Roos, N.M. Promises and problems of functional foods. Crit. Rev. Food Sci. Nutr. 2004, 44, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Tanguler, H.; Selli, S.; Sen, K.; Cabaroglu, T.; Erten, H. Aroma composition of shalgam: A traditional Turkish lactic acid fermented beverage. J. Food Sci. Technol. 2017, 54, 2011–2019. [Google Scholar] [CrossRef]
- Awobusuyi, T.D.; Siwela, M. Nutritional properties and consumer’s acceptance of provitamin a-biofortified amahewu combined with bambara (Vigna subterranea) flour. Nutrients 2019, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Enujiugha, V.N.; Badejo, A.A. Probiotic potentials of cereal-based beverages. Crit. Rev. Food Sci. Nutr. 2017, 57, 790–804. [Google Scholar] [CrossRef]
- Dongmo Nsogning, S.; Kollmannsberger, H.; Fischer, S.; Becker, T. Exploration of high-gravity fermentation to improve lactic acid bacteria performance and consumer’s acceptance of malt wort-fermented beverages. Int. J. Food Sci. Technol. 2018, 53, 1753–1759. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. Hindawi Publ. Corp. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Adeyanju, A.A.; Kruger, J.; Taylor, J.R.N.; Duodu, K.G. Effects of different souring methods on the protein quality and iron and zinc bioaccessibilities of non-alcoholic beverages from sorghum and amaranth. Int. J. Food Sci. Technol. 2019, 54, 798–809. [Google Scholar] [CrossRef]
- Hassani, A.; Procopio, S.; Becker, T. Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: A review paper. Int. J. Food Sci. Technol. 2016, 51, 14–22. [Google Scholar] [CrossRef]
- Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Daily, J.W.; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Jang, J.S.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, H.R.; Park, S. Long-term consumption of fermented soybean-derived Chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. Eur. J. Nutr. 2007, 46, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Baú, T.R.; Garcia, S.; Ida, E.I. Optimization of a fermented soy product formulation with a kefir culture and fiber using a simplex-centroid mixture design. Int. J. Food Sci. Nutr. 2013, 64, 929–935. [Google Scholar] [CrossRef] [PubMed]
Beverage/Place of Origin | Cereals | Microorganisms | Functional Compounds | Health Benefits | Ref. |
---|---|---|---|---|---|
Amazake–Japan | rice koji | Lactobacillus sakei, Aspergillus oryzae; | amino acids; vitamins B1, B2, B6; pantothenic acid, vitamin E, flavonoids, dietary fibre, polysaccharides, sterols; | improves digestion; mitigates hypertension, skin-enhancing action, alleviates liver cirrhosis (200 kcal/150 mL/day/ 12 weeks); | [50,51,52,53] |
Borș/Borsht–Central and Eastern Europe, Romania | wheat bran, corn flour | Lactobacillus delbrueckii ssp. Delbrueckii; | lipophilic and hydrophilic antioxidants (tocopherols, tocotrienols), phenolic compounds, group B vitamins, vitamin E, alkylresorcinols; lignans; | alleviates respiratory and digestive diseases (indigestion, vomiting), effective management of hepatic and bile diseases, potentially beneficial in cancer treatment; | [54,55,56] |
Boza–Turkey, Greece, Bulgaria, Albania, Romania, Bosnia Herzegovina; South Africa | barley, oats, rye, millet, maize, wheat, rice | Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus pentosus, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus brevis, C. inconspicua, C. pararugosa; | vitamin A, vitamins B1, B2, B6, nicotinamide; Ca, Fe, P, Zn, Na, β-glucan, dietary fibres; | improves gastrointestinal health, stimulates the immune system, decreases cholesterol level; | [38,41,57,58,59,60,61] |
Busa–Syria, Egypt, Kenya, Turkistan; | rice or millet | Lactobacillus sp. Saccharomyces spp. | dietary fibre, amino acids, fatty acids, vitamins B1, B2; | lowers cholesterol and reduces risk of cancer and obesity, lowers blood pressure, beneficial in diabetes; | [42,61] |
Gowé–West Africa, Benin | malted and non-malted sorghum, maize | Lb. fermentum, Weissella confusa, Weissella kimchii, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus; | amino acids (glutamic acid and leucine), minerals (Fe, Ca, Zn, P); | certain lactic acid bacteria strains can help in preventing infections by urogenital pathogens; antimicrobial efficacy; | [62,63,64,65,66] |
Kunun-zaki–Nigeria | wheat and sorghum /millet, wheat, malted rice | Lb. plantarum, Lb. fermentum, Lactococcus lactis; Saccharomysces cerevisiae; | minerals (Fe, Ca, Mg, K); | provides micro- and macronutrients, improves nutritional status; | [67,68,69,70] |
Kvass–Lithuania, Russia, Eastern Poland | extruded rye, malted barley | Lactobacillus casei, Lb. sakei, P. pentosaceus, S. cerevisiae; | vitamins B1, B3, B2, B6; dietary fibres, Zn, Cu, maltose, maltotriose, glucose, fructose; | modulates metabolism, reduces flatulence, alleviates hyperacidity; | [17,71,72] |
Mahewu/Amahewu–Africa (Botswana, South Africa, Zimbabwe) | maize, sorghum, millet malt or wheat flour | Lb. brevis, L. casei, L. lactis, Lb. plantarum, S. cerevisiae, S. pombe; | Na, K, Ca, Fe, Zn, Mn; dietary fibre, carbohydrates, group B vitamins; | bacteriostatic and bactericidal properties against enteric pathogens; | [73,74,75,76] |
Munkoyo–Zambia, Democratic Republic of Congo | maize | Lb. plantarum,Weissella confusa, L. lactis Enterococcus italicus; | fibre, vitamins B1, B2, B3, B6, B12, Ca, Fe, Zn, proteins, crude fat; | suppresses diarrhoea; anti-allergen, antimicrobial properties; | [22,77,78,79] |
Obushera– Uganda | sorghum flour or millet, maize | L. Lactis, Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Weissella confusa; | proteins, minerals, fibre; | NA | [80] |
Oshikundu/Ontaku–Namibia | pearl millet meal, sorghum, or pearl millet malt | Lb. plantarum, L. lactis, Lb. delbrueckii ssp. delbrueckii, Lb. fermentum, Lb. pentosus, Lactobacillus curvatus; | shikimic acid, maleic acid, phytic acid, succinic acid; vitamins B1, B2; Ca, Cu, Fe, K, Mg, Mn, Na, S, Zn, P; | NA | [81,82,83] |
Pozol–South Eastern Mexico, Central America | maize | Lb. plantarum, Lb. fermentum, Lb. casei, Lb. delbrueckii, Leuconostoc sp., Bifidobacterium sp., Streptococcus sp., Saccharomyces sp.; | group B vitamins; dietary fibre; | reduces cholesterol levels; improves gastrointestinal health; bactericidal, bacteriolytic, bacteriostatic activities; | [38,84,85] |
Shalgam–Turkey | bulgur flour (wheat) | Lb. plantarum, Lb. paracasei, Lb. brevis Lb. fermentum, S. cerevisiae; | β-carotene, group B vitamins, Ca, Na, Fe; | antiseptic agent; probiotic food; regulates the digestive system’s pH; diuretic action; | [59,86] |
Tobwa (without malt, only LAB)/Togwa–East Africa, Tanzania, Zimbabwe | maize, finger millet (togwa) | Lb. plantarum, Lb. brevis, Lb. fermentum, Lactobacillus cellobiosus, P. pentosaceus, W. confusa; | amino acids; dietary fibre;; vitamin B2, B9, B12; | antimicrobial activity; enteropathogenic inhibition of Campylobacter jejuni and Escherichia coli; eases diarrhoea and prevents malnutrition; | [19,87,88,89] |
Beverage | Sensory Properties/pH | Nature of Use | The Status of Fermentation/Production Scale | Ref. |
---|---|---|---|---|
Amazake | cloudy appearance, sour-sweet taste; pH ~3.9; | dessert, snack, natural sweetening agent, baby food, salad dressing; | homemade and industrialised; | [90,91,93] |
Borș | sour-bitter taste; odour notes: “bran”, “yogurt”, “goat milk-cheese”, “pungent/sour”, “ripe/fermented fruit”; pH 3.3–4.2; | used as a souring ingredient in soups, nutritious drink; | homemade and industrialised; | [54,55,56] |
Boza | thick liquid, pale yellow colouring; sweet-sour taste; pH 2.93–3.72; | nutritious food, snack; | homemade and industrialised: | [58,59,60,61,94] |
Busa | thick homogeneous suspension, light to dark beige; sweet-sour taste; pH 3.4–5.3; | traditionally made and served as an alcoholic drink; | homemade; | [42,95] |
Gowé | brown/white colour; sweet, acidic, cereal taste; soft texture; pH ~3.5–4.7; | thirst-quenching and energy drink; children’s food; | traditional, small-scale processors; | [65,66] |
Kunun-zaki | low viscosity, creamy appearance; sweet-sour taste; pH ~3.8; | refreshing drink; nutritious beverage; | homemade, local producers; | [67,68] |
Kvass | slightly cloudy appearance, light-dark brown colour; sweet-sour taste; pH 3.2–4.3; | soft drink; | traditionally homemade; industrialised differently than the traditional approach; | [71,72] |
Mahewu/Amahewu | creamy colour, sour taste; pH ~3.5; | weaning food for infants, consumed in schools, farms, mines, etc. | homemade, commercially produced in African countries; | [45,74,75,76] |
Munkoyo | slight yellow colour; sweet, mildly sour taste; pH 3.3–4.2; | consumed at household level; energy drink; | homemade; | [22,77,78,79] |
Obushera | moderately thick composition, pale brown colour; sweet and sour taste; pH < 4.5; | thirst quencher, social drink, energy drink, and weaning food; | homemade; commercially relevant types: Obutoko, Obuteire, Ekitiribita; | [80,96] |
Oshikundu/Ontaku | white colour, milky appearance, sweet taste; pH 3.3–3.7; | a token of welcome and hospitality; consumed at special events and daily social interactions; | homemade; local producers; | [81,82,83] |
Pozol | yellow-brown colour; sweet-sour; slightly acidic taste; pH 3.8; | food or refreshing beverage, consumed at religious ceremonies and for its curative properties; | homemade in rural and urban areas of southeast Mexico; small- and large-scale producers; | [85,97] |
Shalgam | red colour; sour taste; | used as a medicine because of its antiseptic agents; | home-scale level; small scale producers; | [59,86] |
Tobwa/Togwa | opaque and brownish colour; sweet, occasionally sour taste; pH~4; | consumed as a popular energy source; | industrially produced in Tanzania; | [87,88] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods 2020, 9, 1031. https://doi.org/10.3390/foods9081031
Ignat MV, Salanță LC, Pop OL, Pop CR, Tofană M, Mudura E, Coldea TE, Borșa A, Pasqualone A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods. 2020; 9(8):1031. https://doi.org/10.3390/foods9081031
Chicago/Turabian StyleIgnat, Maria Valentina, Liana Claudia Salanță, Oana Lelia Pop, Carmen Rodica Pop, Maria Tofană, Elena Mudura, Teodora Emilia Coldea, Andrei Borșa, and Antonella Pasqualone. 2020. "Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages" Foods 9, no. 8: 1031. https://doi.org/10.3390/foods9081031