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Abstract: The potential benefit of soy isoflavones in breast cancer chemoprevention, as suggested
by epidemiological studies, has aroused the interest of numerous scientists for over twenty
years. Although intensive work has been done in this field, the preclinical results continue
to be controversial and the molecular mechanisms are far from being fully understood.
The antiproliferative effect of soy isoflavones has been commonly linked to the estrogen receptor
interaction, but there is growing evidence that other pathways are influenced as well. Among these,
the regulation of apoptosis, cell proliferation and survival, inhibition of angiogenesis and metastasis
or antioxidant properties have been recently explored using various isoflavone doses and various
breast cancer cells. In this review, we offer a comprehensive perspective on the molecular
mechanisms of isoflavones observed in in vitro studies, emphasizing each time the dose-effect
relationship and estrogen receptor status of the cells. Furthermore, we present future research
directions in this field which could provide a better understanding of the inner molecular
mechanisms of soy isoflavones in breast cancer.
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1. Introduction

In the 2014 statistics, breast cancer, together with lung and bronchial, and colorectal cancer, were
estimated to be the three most commonly diagnosed types of cancer, accounting for one-half of all
cancer cases in women. Breast cancer alone was expected to account for 29% (232,670) of all new
cancers among women [1].

According to the American Society of Clinical Oncology, approximately 60% to 75% of women
with breast cancer have estrogen receptor–positive breast cancer and 65% of these cancers are
also progesterone receptor (PR) positive [2]. Multiple lines of evidence support the fact that the
estrogen receptor (ER) signaling pathway is the major driver in stimulating proliferation, survival
and invasion of breast cancer cells [3]. The assessment of ER expression is recommended in both
early breast cancers and metastatic stages. Any detectable ER and/or PR expression (ě1%) using
immunohistochemistry classifies these tumors as hormone receptor-positive [4]. The importance of
ER status lies within its prognostic value, as it identifies patients most likely to benefit from endocrine
forms of therapy.
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Although blocking the activity of estrogen receptors has led to a considerable decline in breast
cancer mortality [5], many patients become resistant to this therapy and develop metastatic tumors.
Once metastases occur, the malignancy remains largely incurable, with a 5-year relative survival of
23% for distant stage diseases [6].

In general, the prevalence of breast cancers is lower in Asian than in North American and
European countries, as epidemiological studies have demonstrated [7]. However, after migration
to North America and Europe, breast cancer incidence in Asians increases and eventually equals the
rates of the host country [8]. These statistics suggest that environmental factors, particularly dietary
patterns, may play an important role in breast cancer development. As additional evidence of the
role of one’s diet in cancer development, the breast cancer incidence and mortality has increased in
Asian countries after a Western diet was adopted [8].

In the traditional Asian diet, soy foods are largely consumed, the daily intake of soy protein
being estimated at 20–30 g (100 mg isoflavones). Conversely, a non-Asian diet contains less than 1 g
of soy protein per day [9]. Due to these different food preferences, an inverse association between soy
isoflavone intake and breast cancer risk has been demonstrated mostly for Asian populations and not
for Western populations [10,11].

These observations have sparked a sustained interest in soy isoflavones as a promising
therapeutic option in breast cancer chemoprevention. First of all, patients with increased breast cancer
risk are taking into consideration supplementing their diet with soy or soy derivates, assuming that a
high consumption might reduce the cancer risk [12]. After breast cancer diagnosis, American patients
have reported dietary changes, adopting a higher soy intake, similar to the intake of vegetarians, but
still less than that of Asian women [13]. In response to this growing demand, from 1996 to 2011, soy
foods sales have increased from $1 billion to $5.2 billion [14]. Along with economic interests, soy
isoflavones have generated great interest among scientists, for deciphering the cellular and molecular
mechanisms underlying their potential chemopreventive role.

Commonly, the chemopreventive role of soy isoflavones in breast cancer has been related to
the interaction with estrogen receptors. However, recent studies have shown that the protective
mechanisms of soy isoflavones are more intricate and yet not completely understood. In the present
paper, we summarize the inhibitory effects of soy isoflavones on breast cancer cells and we provide a
comprehensive view of the molecular mechanisms that underline their chemopreventive effects.

2. Molecular Mechanisms of Soy Isoflavones

The predominant soy isoflavones are genistein, daidzein and glycitein which exist as glycosides,
etherified glycosides and, to a lesser extent, as free forms also known as aglycones (Figure 1).
These compounds present structural and functional similarities to 17-β-estradiol and can bind
estrogen receptors alpha (ERα) and beta (ERβ). This explains their relationship to the phytoestrogen
family, a class of non-steroidal phytochemicals which act like estrogen-like compounds [15].
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Figure 1. Chemical structures of soy aglycones: (A) genistein; (B) daidzein; (C) glycitein.

Due to the structural resemblance with 17-β-estradiol, isoflavones mediate most of their
biological effects through the modulation of estrogen-receptor signaling pathways. In hormone
dependent tissues, estrogens play an important role in many physiological processes, such as cell
proliferation, differentiation or apoptosis. However, high levels of estrogens are a major risk factor
for the development of hormone-dependent diseases, such as breast or prostate cancer. It is still
not completely clear why endogenous or synthetic estrogens increase breast cancer risk, while
phytoestrogens, structurally similar compounds, appear to have the opposite effect.
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Apart from ER-mediated signaling mechanisms, there is growing experimental evidence that
soy isoflavones exert important ER-independent effects. Genistein has been shown to inhibit the
growth of ER-negative breast cancer cells, demonstrating that other cellular mechanisms may play an
important role in chemoprevention as well [16,17]. In fact, a pangenomic microarray analysis revealed
that after genistein or daidzein exposure, there was only a partial overlap between the modulated
molecular pathways in ER positive and ER negative cell lines [18]. Numerous in vitro studies have
shown that isoflavones inhibit cell proliferation and trigger apoptosis by inhibiting the activity of
several enzymes, such as tyrosine protein kinase [19,20], mitogen-activated kinase [17] or DNA
topoisomerase II [20]. In addition to these, isoflavones, especially genistein, promote antioxidant
defense and DNA repair [21,22], inhibit the development of tumor angiogenesis and metastasis [23]
and also interfere in other ER-independent signal transduction pathways.

It is difficult to make a clear distinction between estrogen dependent and independent
mechanisms, as intrinsic cellular pathways often interfere or overlap. Isoflavone molecular
mechanisms which are not ER-mediated can be investigated by several methods, either by knocking
down the ER, blocking the ER using pure ER blockers or preferably, using ER negative breast cancer
cell lines.

3. ERs and GPER1 Mediated Mechanisms

The classical interaction of isoflavones with ER involves the binding to the ligand-binding
domain of the receptor. Subsequently, the receptor-ligand complex binds to sequence-specific
response elements known as estrogen response elements from DNA and the target gene transcription
is then triggered. In addition to the classical genomic pathway, ERα and ERβ can also regulate
gene transcription by rapidly activating Src/mitogen-activated protein (Src/MAP) kinase [24],
phosphatidylinositide 3-kinases/Akt (PI3K/Akt) [25] and other direct DNA-binding transcription
factors, such as activating protein 1 (AP1), specificity protein 1 (SP1), cAMP response element-binding
protein (CREB), nuclear factor-κB (NF-κB) or p53 [26].

Although both ERα and ERβ are part of the steroid receptor superfamily, they are encoded
by distinct genes (ESR1 and ESR2, respectively) and exert distinct biological functions. ERα is
associated with aberrant proliferation, inflammation and the development of malignancy. By contrast,
ERβ seems to oppose ERα actions on cell proliferation by modulating the expression of many
ERα-regulated genes and exhibiting anti-migratory and anti-invasive properties in cancer cells [26].

The in vitro binding selectivity of soy isoflavones towards ERβ over ERα may provide insight
into the biological activity of these natural compounds. Genistein presents 20 to 30-fold higher
binding affinity for ERβ than for ERα, while daidzein has a 5-fold increased affinity for ERβ [27].
These binding capacities have been shown to vary considerably depending on the estrogenic
endpoint used, especially for daidzein [28]. However, compared to the natural ligand, 17-β-estradiol,
the binding affinity of isoflavones for ERα and ERβ is one to three orders of a lower magnitude [27,29].
Additionally, the active metabolite of daidzein, S-equol, shows a binding preference greater than that
of its precursor and comparable to that of genistein. By contrast, the R isomer of equol exhibits a
binding selectivity for ERα [30].

During tumor development, the ERα/ERβ balance is tilted in favor of ERα due to an
upregulation of ERα mRNA levels within the tumor compartment [31]. As a consequence, the cellular
response after isoflavones exposure is dependent not only on the receptor positivity, but also on the
concrete ERα/ERβ expression level.

Using T47D breast cancer cell line with tetracycline-dependent ERβ expression and constant ERα
expression, it has been shown that genistein can stimulate cell proliferation in the absence of ERβ
expression. Additionally, in cells with full ERβ expression, genistein inhibited growth-stimulatory
effects more efficiently than in cells with no expression of recombinant ERβ [29]. Also, depending on
the ERα/ERβ ratio, isoflavones can influence cancer cell proliferation, apoptosis and cell cycle arrest
as well [32]. Following genistein treatment, MCF-7 breast cancer cells (with high ERα/ERβ ratio) and
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MDA-MB-231 (ER negative) have shown an increased proliferation rate, while in T47D breast cancer
cells (with low ERα/ER ratio), the same treatment produced cell cycle arrest, improved mitochondrial
functionality [32] and decreased the oxidative stress [33].

To get deeper insight into the role of ERα/ERβ ratio, a global gene expression profile was
performed on MCF-7 and T47D breast cancer cells exposed to soymilk extracts. At high ERα levels,
soy isoflavones determined the same expression changes as those induced by estrogen, promoting the
upregulation of multiple factors involved in the cell cycle, DNA replication, chromosome segregation
and inhibition of apoptosis. When an inducible promoter was used to reconstitute the expression of
ERβ, an attenuation of cell division growth-promoting factors was observed, along with a stimulation
of cell proliferation arrest factors [34].

Furthermore, transcriptomics and stable isotope labeling by amino acids in cell culture
(SILAC)-based proteomics were performed on T47D-ERβ breast cancer cells exposed to genistein.
Results revealed that, in cells expressing ERβ, genistein decreased cell proliferation, induced cell cycle
arrest and apoptosis. In the presence of ERβ, genistein reduced the cell motility and the metastatic
potential, while ERα expression was correlated with cell proliferation [35]. Similar results were
obtained after hierarchical clustering analysis based on transcriptomics data. The overlap of estrogen
regulated genes was greater for genistein and equol, compared to the gene expression patterns of
other phytoestrogens. Particularly, isoflavones had less stimulatory effects on proliferation, motility
and inflammation genes compared to estrogen [36].

Thus, soy isoflavones, especially genistein, mediate important cellular processes via estrogen
receptors and the ERα/ERβ ratio of the cell lines should be carefully considered when drawing
conclusions. Although the binding affinity of genistein is higher for ERβ, there are particular
conditions where genistein could lead to detrimental effects. Such are the cases of low to higher
grades of ductal cancers and high-grade lobular cancers, characterized by loss of ERβ expression,
high ERα level and high proliferation [37]. To these patients, soy consumption should be re-evaluated
and special attention should be paid to the phytoestrogen daily intake.

Despite the structural similarity to 17-β-estradiol, isoflavones elicit not only estrogenic, but also
antiestrogenic effects. Preclinical evidence has shown that at premenopausal levels of 17-β-estradiol
(1 nM), isoflavones exert their effects as estrogen antagonist, while under low estrogen conditions,
comparable to postmenopausal levels (0.01 nM), isoflavones act as estrogen agonist [38]. On the
contrary, recent in vitro research has found that phytoestrogens induce proliferation of ER positive
breast cancer cells at physiological concentrations of estrogen, but inhibit the growth and induce
apoptosis in cells unexposed to estrogen [39] or in long-term estrogen-deprived cells [40]. In this light,
the growth medium composition is particularly important for cells that express ERs, such as MCF-7.
The ubiquitous pH indicator, phenol-red, has been shown to exert significant estrogenic activity at
concentrations of 15–45 µM, such levels being found in culture media [41]. Thus, for reproducing a
completely estrogen deprived medium, cells must be cultivated in a phenol red free medium which
can be supplemented with charcoal stripped serum or with a synthetic serum.

In explaining the heterogeneity of results, another essential factor is the considered isoflavone
dose. Genistein mediates estrogenic effects and promotes cell growth at low concentrations
(0.01–10 µM), a concentration of 100 nM producing proliferative effects similar to those induced
by 1 nM estradiol [42]. On the contrary, higher concentrations of genistein (>20 µM) generate
anti-estrogenic effects and inhibit cell growth [42–46]. In ER negative cells, this dual effect was
not observed, genistein producing only antiproliferative effects, especially at high doses [47,48].
This suggests that the proliferative effects of genistein, observed at low doses, are ER mediated, while
the antiproliferative effects, mainly observed at high doses are ER independent. However, this does
not exclude the possibility that genistein can exert additional antiproliferative effects, ER mediated,
especially in cells with high ERβ expression, as explained above.

The stimulatory effects of genistein have not been exclusively related to ERα interaction.
Similar to 17-β-estradiol, genistein can induce cell proliferation via G protein coupled estrogen
receptor 1 (GPER1) [49,50], as an alternative, non-genomic signaling pathway. Activation of
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GPER1 stimulates cAMP production, intracellular Ca2+ mobilization and induces c-Src activation.
Subsequent, the transactivation of the epidermal growth factor receptor is triggered and downstream
signaling pathways such as PI3K/Akt and mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK) are activated. Through GPER1-dependent pathways, genistein
stimulated c-fos expression even in the absence of ERs [49] and stimulated acid ceramidase
gene (ASAH1) expression in MCF-7 cells [50]. Thus, low concentrations of genistein can induce
proliferation in breast cancer cells by modulating both the genomic and the non-genomic signaling
pathways (Figure 2).
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4. Effects on Apoptosis

In maintaining a healthy balance between cell survival and cell death, apoptotic mechanisms
play important roles. Dysregulation of the apoptotic processes can allow neoplastic cells to survive
over intended lifespans and favor treatment resistance to conventional therapies, requiring higher
doses of cytotoxic agents.

The apoptotic mechanisms of isoflavones have been widely investigated, in vitro studies
reporting pro-apoptotic effects mainly through mitochondrial dependent pathways. Along with the
ER status, the caspase-3 status represents another critical determinant in explaining the different
responses of breast cancer cells towards isoflavone treatment. Transfection of caspase-3 in MCF-7
cells resulted in enhanced apoptotic death after genistein exposure, while caspase-3 knockdown in
MDA-MB-231 cells rendered cells to be more resistant to genistein [51]. Among other phytoestrogens,
genistein and equol also activated caspase-4, which binds interleukin 6 (IL-6), a proinflammatory
cytokine, inducing an inflammatory stress response to the cells [40].

In MCF-7 cells, equol and 4-hydroxy-tamoxifen (4-OHT), the active metabolite of tamoxifen,
induced activation of caspase-9 and caspase-7, together with cytochrome-c release into cytosol.
The combination of these two induced a more potent inhibition than individual exposure.
Following treatment with Z-VADFMK, a pan-caspase inhibitor, inhibited equol- and 4-OHT-mediated
apoptosis, indicating that apoptosis is mainly caspase-mediated. These effects were observed after
relatively high doses of equol (100 µM) and 4-OHT (10 µM) [52]. In a similar experiment, daidzein
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(25–100 µM) induced cell death in a dose dependent manner acting through the same mitochondrial
pathways [53].

Some reports suggest that genistein-induced caspase-7 activation involves the activation of
calpain by Ca2+ depletion of the endoplasmic reticulum [54]. Moreover, genistein induces DNA
damage-inducible transcript 3 (DDIT3), a marker of endoplasmic reticulum stress associated with
cell death and of inositol requiring protein 1 alpha (IRE1α), an unfolded-protein-response sensor,
which is activated to relieve stress [40].

Numerous investigators have also reported that genistein induces apoptosis through
downregulation of Bcl-2, Bcl-xL and upregulation of Bax or by releasing cytochrome C into the
cytosol [17,22,48,53,55]. In ER negative MDA-MB-231 cells, low doses of genistein (1 µM) increased
the Bax/Bcl-2 ratio along with a significant decrease in phosphorylated Extracellular signal Regulated
Kinase 1/2 (ERK1/2), but only in the presence of 1 nM 17-β-estradiol. Higher genistein concentrations
(100 µM) stimulated apoptosis independent of 17-β-estradiol presence through mechanisms that were
not correlated with the Bax/Bcl-2 ratio or with phosphorylation of ERK1/2 [50]. So, it is possible that
low doses of genistein induce cell death through Bax/Bcl-2 pathways, but higher concentrations lead
to cell death through other cytotoxic mechanisms.

Altogether, genistein exerts apoptotic effects mainly by caspase activation, the activation of
several endoplasmic reticulum stress regulators and Bax/Bcl-2 ratio upturn. Additional mechanisms
have also been advanced, such as the inhibition of the proteasome activity [56] or the downregulation
of anti-apoptotic survivin [22]. In most cases, apoptotis is induced after high concentrations of
genistein or daidzein, above 50 µM [22,52,57]. As genistein triggers apoptosis also in ER negative
cell lines [17,48] or after ERα knockdown [55], some apoptotic mechanisms might not require the
ER expression.

5. Effects on Cell Proliferation and Survival

5.1. Inhibition of NF-κB Pathway Activation

Activation of NF-κB is confined predominantly to inflammatory and ER-negative breast cancer
subtypes, but constitutive NF-κB activity has also been observed in ER positive cancer types [58,59].
In fact, the progression to a more aggressive, endocrine-resistant breast cancer phenotype can be
attributed to a positive cross-talk between ER and NF-κB activation, suggesting that these two
transcription factors cooperate to upregulate the expression of several genes involved in cell survival
and chemoresistance [60].

Soy isoflavones have shown to inhibit NF-κB activation, blocking mainly the canonical NF-κB
activation pathway. In MCF-7 breast cancer cells engineered to overexpress oncogenic HER2 (MCF-7
HER2) and control vector cells (MCF-7 vec), genistein (100 µM) inhibited the phosphorylation of IκBα,
sequestering NF-κB complexes into cytoplasm [61]. Similar results were obtained for MDA-MB-231
cells, where lower doses of genistein (5–20 µM) caused a concentration-dependent decrease in
NF-κB/p65 nuclear protein levels, most likely by inhibiting the phosphorylation of IκB proteins [17].
Moreover, genistein inhibited the translocation of NF-κB dimers to the nucleus and their binding to
DNA, preventing the transcription of NF-κB downstream genes [17,61].

The inhibition of NF-κB activity by genistein can be mediated via Notch-1, a signaling pathway
with an important regulatory role in triple negative breast cancers. In MDA-MB-231 cells, genistein
(ě20 µM) inhibited Notch-1 expression together with the downregulation of NF-κB targeted proteins:
cyclin B1, Bcl-2 and Bcl-xL. As the downregulation of Notch-1 and NF-κB expression by siRNA
inhibited the expression of these proteins, it was suggested that NF-κB inactivation is mediated via
Notch-1 pathway [16].

Both NF-κB and Notch-1 pathways are mainly expressed in triple negative breast cancer, the
cancer subtype with the worst prognosis among all breast cancer subtypes [62]. As there is no targeted
therapy for this subtype, genistein could represent a therapeutic option in blocking both NF-κB and
Notch-1 pathways.
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5.2. Effects on PI3K/Akt/mTOR Signaling Pathway

The phosphatidylinositol 3-kinase/protein kinase-B mammalian target of rapamycin
(PI3K/Akt/mTOR) intracellular pathway plays a crucial role in cellular survival, proliferation
or protein synthesis. Hyperactivation of this pathway has been associated with tumor development
and resistance to anticancer therapies [63]. In breast cancers, PI3K/Akt/mTOR is the most frequently
activated signaling pathway [64], with more than 70% of breast cancers presenting molecular
alterations in one or more components of the PI3K/Akt pathway [65]. A significant cross-talk
between the PI3K/Akt/mTOR and the ER pathway has been established, PI3K/Akt/mTOR
inhibition expanding the endocrine therapy benefit in ER positive breast cancers, from the first-line
setting and beyond [64].

There is strong evidence that the activation of PI3K/Akt pathway can take place through
insulin-like growth factor 1 receptor (IGF-1R). At high doses (ě20 µM), genistein has shown to inhibit
the activation of the IGF-1R/Akt signaling pathway, leading to apoptosis through downregulation of
Bcl-2 and upregulation of Bax [66]. Contrarily, at low doses (1 µM), genistein mimics the estrogen
stimulatory effects, increasing the mRNA expression of the IGF-1R. When cells were co-treated with
JB-1, an IGF-1R antagonist, this effect was completely blocked [67]. These results uphold again
the dose dependent effect of genistein and the fact that inner mechanisms could rely on IGF-1R
interaction and the subsequent activation of PI3K/Akt pathway.

In the PI3K/Akt cascade, genistein can also act on a more downstream level, inducing the
expression of PTEN, the natural inhibitor of PI3K/Akt signaling pathway. Using a non-tumorigenic
human mammary epithelial cell line, MCF-10A, genistein increased PTEN and p53 expression.
Next, a sequence of PTEN-dependent reactions is triggered, initiating an autoregulatory loop between
PTEN and p53 that can stimulate mammary epithelial cell cycle arrest and early lobuloalveolar
differentiation. Notably, genistein’s stimulatory effects on PTEN and p53 occurred at low genistein
doses (2 µM), that correspond to serum concentrations of regular soy consumers [68].

The decreased PTEN level could be attributed to homeobox transcript antisense RNA (HOTAIR)
oncogenic effects, as was demonstrated for laryngeal squamous carcinoma cells. HOTAIR promoted
PTEN methylation resulting in a loss of PTEN expression and seizing the opportunity for PI3K/Akt
activation [69]. In breast cancer, HOTAIR plays also a promoter role, overexpression of HOTAIR being
associated with metastasis and poor overall survival [70]. Recently, it has been shown that calycosin
or genistein (80 µM) reduced HOTAIR expression and decreased phosphorylation of Akt in MCF-7
cells [71].

All the above studies have evaluated genistein’s influence on the growth of breast cancer cell
lines after a short-term exposure, 48 or 72 h. Considering that short time exposure to genistein
does not reflect the long term effects induced by a soy diet, a different in vitro experimental model
tried to determine the effects of low-dose, long-term genistein exposure. For this, ER expression
and PI3-K/Akt signaling activity were assessed after MCF-7 cells were treated with 10 nM genistein
for 10–12 weeks. Long-term genistein treatment reduced the growth promoting effects of estrogen,
although there was no change in the ERα expression. Also, genistein decreased the protein expression
of total Akt and phosphorylated Akt and increased the ability of a PI3-kinase inhibitor, LY 294002, to
suppress cell growth. As a result of the above mentioned, long-term genistein treatment could alter
the PI3-K/Akt signaling pathway in ER positive breast cancer cells [72].

Overall, genistein can interfere at several levels in the PI3-K/Akt cascade, either by blocking
the IGF-1R or stimulating the inhibitory effects of PTEN, or, at a lower level, by reducing the
protein expression of total Akt and phosphorylated Akt. To our knowledge, a direct correlation
between genistein exposure and inhibition on PI3-K/Akt via its downstream target, mTOR, has not
been established for breast cancer cells until now. Still, downregulation of mTOR expression after
isoflavone treatment has been demonstrated for other types of hormonal cancers, such as prostate or
ovary [73].
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5.3. Effects on MAPK/ERK Signaling Pathway

Targeting only the PI3K/Akt/mTOR signaling pathway does not guarantee that the survival
signals will not be transmitted to the downstream nuclear effectors. In fact, inhibition of
PI3K/Akt/mTOR proved the activation of another important pathway dysregulated in breast
cancer, the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)
pathway [74]. Activation of these pathways through hetero-dimerization of erbB2 and erbB3 can lead
to multi-drug resistance in breast cancers [75]. As there are multiple points of convergence, cross-talk
and feed-back loops between these two signaling pathways, finding a joint inhibitor could lead to a
greater inhibitory effect [74].

Genistein has been shown to inhibit the MAPK signaling pathway in both ER positive and
ER negative breast cancer cells, but apparently through different mechanisms. In MDA-MB-231
cells, genistein (5–20 µM) suppressed the protein levels of MEK5, total ERK5 and phospho-ERK5
in a dose-dependent manner [17]. In MCF-7 cells, high genistein concentrations (100 µM) triggered
apoptosis by activating the p38 MAPK through Ca2+ release from the endoplasmic reticulum [54].

As discussed herein, genistein can also induce cell growth, at concentrations below 10 µM. The
stimulatory effects of genistein can also be attributed to delayed and prolonged phosphorylation
of ERK1/2. Co-incubation of MCF-7 cells with an ERK inhibitor abolishes ERα transactivation,
indicating that the MAPK/ERK signaling pathway is necessary for ER-mediated transcription [76].
The same stimulatory effects were observed in erbB-2-transfected ER positive MCF-7 cells treated
with low doses of genistein. These effects were due to the enhanced activation of ER, MAPK/ERK1/2
and PI3K/Akt signaling pathways, underlying the close ER—erbB-2 cross-talk in breast cancer
cells [77]. Therefore, isoflavones and especially genistein, can interfere in several pathways that
control apoptosis and cell survival, targeting key molecules, as depicted in Figure 3.
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Figure 3. The main molecular targets of genistein that are involved in apoptosis and cell survival
mechanisms. Arrow-headed lines indicate activation (or upregulation) and bar-headed lines
indicate inhibition (or downregulation). Abbreviations: Akt, Protein kinase-B; ASK1, Apoptosis
signal-regulating kinase 1; Bad, Bcl-2-associated death promoter; Bcl-2, B-cell lymphoma 2; Bcl-xL,
B-cell lymphoma-extra large; Casp-3,-4,-9, Caspases 3, 4 and 9; Cyto-c, Cytochrome-c; Erk1/2,
Extracellular-signal-regulated kinase 1/2; FADD, Fas-Associated protein with Death Domain; IKKα

and IKKβ, IκB kinases; JNK, Jun amino-terminal kinases; mTOR, mammalian target of rapamycin;
NEMO, NF-κB essential modulator; NF-κB, Nuclear factor κB; p53, Tumor protein p53; PI3K,
Phosphoinositide 3-kinase; PIP3, Phosphatidylinositol (3,4,5)-trisphosphate; PTEN, Phosphatase and
tensin homolog; TRADD, TNF receptor-associated death domain; TRAF2, TNF receptor-associated
factor 2.
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6. Effects on Angiogenesis and Metastasis

Pathological angiogenesis is a sequential process characterized by a shift between pro-angiogenic
and anti-angiogenic factors. It is usually triggered by a hypoxic microenvironment that will activate
various oxygen sensors, growth factors, angiopoietins, junctional molecules, endothelial sensors,
finally leading to enhanced vascularization and rapid tumor growth [78]. Following angiogenesis,
cancer cells are allowed to spread and invade nearby tissues, creating metastases. For breast
cancer, bone metastases represent the most common metastatic site overall or the exclusive first
site of metastasis. Lung, liver and brain are the next most common sites, in descending order of
incidence [79].

Soy isoflavones, and particularly genistein, have been intensively examined for their
anti-angiogenetic properties using endothelial cell lines [23,80,81]. The proposed mechanisms are
mostly related to inhibition of vascular endothelial growth factor/basic fibroblast growth factor
(VEGF/bFGF), as the VEGF family is widely recognized as a key regulator in tumor angiogenesis.
Generally, the anti-angiogenetic effects were observed at medium and high concentrations of soy
isoflavones (10–150 µM). In return, lower doses (0.1–10 µM) of genistein increased VEGF secretion
in MCF-7 (ER positive), MELN (derived from MCF-7 cells) and MELP (derived from MDA-MB-231
cells and transfected with ERα), but not in MDA-MB-231 cells (ER negative), suggesting that ERα is
necessary for VEGF stimulation [82].

The same dual effect of genistein was observed for the C-X-C chemokine receptor type 4
(CXCR4) and C-X-C motif chemokine 12 (CXCL12) levels in breast and ovarian cancer cells.
The interaction between CXCR4 and CXCL12 plays an important role in cancer progression, adhesion
and metastasis. The exposure to >10 µM genistein downregulated CXCR4, inhibiting chemotaxis
and chemoinvasion of breast and ovarian cancer cells towards CXCL12. Then again, low doses
of genistein (1–10 µM) upregulated CXCL12 mRNA levels in MCF-7 cells, proving once again the
twofold effect of genistein [83]. Similar conclusions were drawn after an oligonucleotide microarray
experiment, where genistein (30 µM and 50 µM) downregulated the expression of CXCL12 and
matrix metalloproteinase 2 (MMP-2) and 7 (MMP-7). At the same time, genistein upregulated several
invasion and metastasis inhibitors, such as tissue factor pathway inhibitor-2 (TFPI-2), activating
transcription factor 3 (ATF3), DNA methyltransferase 1 (DNMT1) and membrane-type 1 matrix
metalloproteinase cytoplasmic tail-binding protein-1 (MTCBP1) genes [84]. Inhibition of invasion
via MMP-2 downregulation was also observed in MDA-MB-231 cells after treatment with daidzein
or equol enantiomers (50 µM) [85]. For the same cell line, the activity of MMP-3 remained unaffected
after genistein, genistin or daidzein treatment (10–30 µM) [86].

A recent experimental model of murine mammary cancer 4T1 cells engineered with luciferase
has shown that soy isoflavones (<10 µM) had limited effects on the growth, motility or invasion of
4T1 cells in vitro. However, after the cells were injected into the tibia of female Balb/c mice, they
stimulated metastatic tumor formation and increased Ki-67 protein expression [87]. The stimulatory
effect observed in vivo could be due to systemic effects between the host, 4T1 tumors and
soy isoflavones.

In summary, genistein (>10 µM) can exhibit anti-angiogenic and anti-metastatic effects in
breast cancer cells through multiple mechanisms. These mechanisms involve the downregulation
of VEGF and other pro-angiogenic factors and also the downregulation of MMPs and upregulation
of angiogenesis inhibitors. But the modulatory mechanisms of genistein in breast cancer are far
from being fully identified. In prostate cancer cells, it has been proved that genistein inhibits
expression/accumulation of other pro-angiogenic factors like the hypoxia-inducible factor-1α
(HIF-1α), apurinic apyrimidinic endonuclease redox effector factor-1 (APE1/Ref-1) or interleukin-8
(IL-8) [88]. Further studies are required to find out whether genistein interferes with these molecules
in breast cancer cells as well, or if the mechanisms are tissue-specific.
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7. Effects of Soy Isoflavones on Reactive Oxygen Species and DNA Damage

Excessive generation of reactive oxygen species (ROS) has been linked to breast cancer
development, progression and resistance to therapy. ROS can induce epigenetic changes or activate
several growth-promoting signaling pathways such as PI3K/Akt, ERK1/2, MAPK/ERK or EGFR,
finally leading to mitochondrial dysfunction and DNA damage [89,90]. In ER–positive breast cancer
cells as MCF-7, higher ROS levels and greater DNA damage are induced by estrogen through ER
dependent mechanisms [91]. More precisely, the ERα/ERβ ratio determines the oxidative status in
response to estrogen, as cells with high ERα/ERβ ratio showed increased oxidative damage along
with low levels of antioxidant enzymes and uncoupling proteins [92].

Like estrogen, genistein modulates oxidative stress in breast cancer cell lines according to the
ERα/ERβ ratio [32,33]. After treatment with genistein (1 µM), the low ERα/ERβ ratio T47D cells
showed improved mitochondrial functionality and antioxidant enzyme activity, the upregulation of
uncoupling protein 2 and sirtuins and overall, lower oxidative stress. In contrast, in MCF-7 cells,
characterized by high ERα/ERβ ratio, genistein treatment did not cause any change in mitochondrial
functionality, antioxidant response or sirtuins levels [33]. These distinct effects could be due to
genistein’s greater affinity towards ERβ, as discussed above. In MCF-7 cells, a decreased expression
of antioxidant enzymes, namely CuZnSOD, MnSOD and thioredoxin reductase (TrxR), along with the
upregulation of glutathione peroxidase (GPx) expression was reported only after exposure to higher
genistein doses (100 µM). This may favor oxidative stress formation with consequent apoptosis and
autophagy induction [22].

Apart from the modulation of oxidant enzymes, genistein can also induce death to MDA-MB-231
cells through mobilization of endogenous copper ions and generation of reactive oxygen species.
After genistein treatment (50 µM), the superoxide anion is generated, then rapidly converted to
hydrogen peroxide (H2O2), which causes the formation of hydroxyl radical (HO´) through the
oxidation of reduced copper, according to the Fenton reaction. As ROS accumulate, irreversible DNA
damage occurs, leading to cell death [93]. Furthermore, genistein (5 µM) can act as a suppressor
of cytochrome enzymes CYP1A1 and CYP1B1, reducing the oxidative DNA damage induced by
polycyclic aromatic hydrocarbons in the normal breast cancer cell line, MCF-10A [21].

Altogether, genistein has been shown to modulate the oxidative status of breast cancer cells
either by favoring ROS accumulation or by decreasing the antioxidant defense and, therefore,
inducing cell death. In order to improve the antioxidant properties of genistein, structural modulation
has been made towards increasing the number of hydroxyl groups. Thus, the bioconversion of
genistein to 21-hydroxygenistein has shown a superior radical scavenging activity and a greater
antiproliferative effect on MCF-7 cells [94].

8. Conclusions and Perspectives

The mechanisms of soy isoflavones in breast cancer have conventionally been linked to the
modulation of ER, especially ERβ. However, current in vitro studies show that soy isoflavones
interfere in other signaling pathways that control cell progression, such as NF-κB, PI3K/Akt or
MAPK/ERK. Moreover, isoflavones can initiate apoptotic events, inhibit angiogenesis signaling
pathways or interfere in the redox state of the cells.

Recently, several lines of evidence support the fact that isoflavones exert also epigenetic
properties, reducing DNA methylation [95] or modulating the histone acetylation [96]. In addition,
genistein has been shown to enhance the radiosensitivity of tumoral cells [97] and to increase the effect
of chemotherapeutic agents such as doxorubicin [98] or trastuzumab [99]. These novel mechanisms
must be further explored in close connection with the existing data in order to have an accurate
overview of the results and explain the potential contradictory results.

Furthermore, conclusions should be drawn only in relation to the cellular ER status and
the ERα/ERβ ratio for ER positive cells. In order to mimic a particular physiological state
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(premenopausal or postmenopausal), prior estrogen exposure or depletion of the cells should be
made. Special attention should be given to doses, as soy isoflavones exert dose-dependent effects.

In addition to classical in vitro assays, novel high-throughput approaches, such as cell culture
proteomics [35], transcriptomics [36] or metabolomics [100] are rapidly gaining ground. Advances
in DNA microarrays, two-dimensional electrophoresis, labeling techniques, NMR and LC-MS
techniques will provide a comprehensive overview of the inner molecular mechanisms of isoflavones
in breast cancer cells.

In parallel, considerable attention is given to improving isoflavones properties as well. As
genistein has unsuitable physiochemical properties to drug formulation, a step forward has
been made by designing genistein-loaded liposomes [101] and genistein-loaded biodegradable
nanoparticles [102] with superior solubility, stability and drug delivery. Other studies have focused
on enhancing the anticancer activity of genistein by modulating the structure-activity relationship.
Synthetic structurally-modified derivatives of genistein were obtained by coordination with copper
(II) [103], 21-hydroxylation [94] or conjugation with polysaccharides [104,105] and exerted higher
anti-cancer activity compared to parent genistein.

Novel approaches of cancer treatment are in favor of multi-target agents in order to reduce
activation of compensatory mechanisms that lead to drug resistance. As soy isoflavones exert
pleotropic effects and modulate multiple signaling pathways, they represent promising naturophatic
agents for the management of breast cancers [106].

Everything considered, there is still a keen interest in exploring isoflavones chemopreventive
properties as cellular mechanisms are not fully understood. Once the molecular mechanisms of
isoflavones are addressed, in vivo experiments must be carried out in order to validate the preclinical
results. Together, these studies will provide a deeper understanding of the role of isoflavones in breast
cancer chemoprevention and chemotherapy.
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